This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100443 #7 Apr 08 2023 02:28:42 %S A100443 1,0,1,2,-3,44,-215,1014,-3647,11528,-35919,135530,-597179,2850132, %T A100443 -13623623,60226334,-236639535,832756304,-2732731487,9035612658, %U A100443 -33172306739,138937617020,-615393110199,2649206536262,-10668440765663,40078777939224,-142523015012975 %N A100443 Inverse binomial transform of A003418. %H A100443 G. C. Greubel, <a href="/A100443/b100443.txt">Table of n, a(n) for n = 0..1000</a> %F A100443 a(n) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*A003418(j). - _G. C. Greubel_, Apr 08 2023 %t A100443 A100443[n_]:= (-1)^n +Sum[(-1)^(n-k)*Binomial[n, k]*Apply[LCM, Range[1, k]], {k,n}]; %t A100443 Table[A100443[n], {n,0,50}] (* _G. C. Greubel_, Apr 08 2023 *) %o A100443 (Magma) [(&+[(-1)^(n-k)*Binomial(n,k)*Lcm([1..k]): k in [0..n]]): n in [0..50]]; // _G. C. Greubel_, Apr 08 2023 %o A100443 (SageMath) %o A100443 def A100443(n): return sum((-1)^(n-k)*binomial(n,k)*lcm(range(1,k+1)) for k in range(n+1) ) %o A100443 [A100443(n) for n in range(61)] # _G. C. Greubel_, Apr 08 2023 %Y A100443 Cf. A003418. %K A100443 sign %O A100443 0,4 %A A100443 _N. J. A. Sloane_, Nov 21 2004