This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100452 #18 Apr 07 2023 05:25:17 %S A100452 1,3,4,7,8,9,13,14,15,16,19,20,21,24,25,27,28,30,32,35,36,39,40,42,44, %T A100452 45,48,49,49,50,51,52,55,60,63,64,63,64,66,68,70,72,77,80,81,79,80,81, %U A100452 84,85,90,91,96,99,100,91,92,93,96,100,102,105,112,117,120,121 %N A100452 Triangle read by rows, based on array described below. %C A100452 The interesting property of this array is that the main diagonal gives A000960. %H A100452 G. C. Greubel, <a href="/A100452/b100452.txt">Rows n = 1..50 of the triangle, flattened</a> %H A100452 H. Killingbergtro and C. U. Jensen, <a href="https://www.jstor.org/stable/24524630">Problem 116</a>, Nord. Mat. Tidskr. 5 (1957), 160-161. %F A100452 Form an array a(m,n) (n >= 1, 1 <= m <= n) by: a(1,n) = n^2 for all n; a(m+1,n) = (n-m)*floor( (a(m,n)-1)/(n-m) ) for 1 <= m <= n-1. %e A100452 Array begins: %e A100452 1 4 9 16 25 36 49 64 81 100 ... %e A100452 3 8 15 24 35 48 63 80 99 ... %e A100452 7 14 21 32 45 60 77 96 ... %e A100452 13 20 30 44 55 72 91 ... %e A100452 19 28 42 52 70 90 ... %e A100452 and triangle begins: %e A100452 1 %e A100452 3 4 %e A100452 7 8 9 %e A100452 13 14 15 16 %e A100452 19 20 21 24 25 %e A100452 27 28 30 32 35 36 %e A100452 ... %t A100452 max=11; a[1, n_]:= n^2; %t A100452 a[m_, n_]/; 1<m<=n := a[m, n]= (n-m+1)*Floor@((a[m-1, n] -1)/(n-m+1)); %t A100452 a[_, _]=0; %t A100452 t= Table[a[m, n], {m,max}, {n,m,max}]; %t A100452 Flatten[Table[t[[m-n+1, n]], {m,max}, {n,m}]] (* _Jean-François Alcover_, Feb 21 2012 *) %o A100452 (Magma) %o A100452 function t(n,k) // t = A100452 %o A100452 if k eq 1 then return n^2; %o A100452 else return (n-k+1)*Floor((t(n,k-1) -1)/(n-k+1)); %o A100452 end if; %o A100452 end function; %o A100452 [t(n,n-k+1): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Apr 07 2023 %o A100452 (SageMath) %o A100452 def t(n, k): # t = A100452 %o A100452 if (k==1): return n^2 %o A100452 else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1)) %o A100452 flatten([[t(n, n-k+1) for k in range(1,n+1)] for n in range(1, 16)]) # _G. C. Greubel_, Apr 07 2023 %Y A100452 Cf. A000960, A100453. %Y A100452 Column sums give A100454. %Y A100452 Row 1 = A000290, row 2 = A000290 - 1, row 3 = A100451. %Y A100452 See also A100461. %K A100452 nonn,tabl,nice %O A100452 1,2 %A A100452 _N. J. A. Sloane_, Nov 22 2004