This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100461 #8 Apr 07 2023 02:16:37 %S A100461 1,1,2,1,2,4,3,4,6,8,7,8,9,12,16,25,26,27,28,30,32,49,50,51,52,55,60, %T A100461 64,109,110,111,112,115,120,126,128,229,230,231,232,235,240,245,248, %U A100461 256,481,482,483,484,485,486,490,496,504,512,1003,1004,1005,1008,1010,1014,1015,1016,1017,1020,1024 %N A100461 Triangle read by rows, based on array described below. %H A100461 G. C. Greubel, <a href="/A100461/b100461.txt">Rows n = 1..50 of the triangle, flattened</a> %F A100461 Form an array t(m,n) (n >= 1, 1 <= m <= n) by: t(1,n) = 2^(n-1) for all n; t(m+1,n) = (n-m)*floor( (t(m,n) - 1)/(n-m) ) for 1 <= m <= n-1. %e A100461 Array begins: %e A100461 1 2 4 8 16 32 ... %e A100461 * 1 2 6 12 30 ... %e A100461 * * 1 4 9 28 ... %e A100461 * * * 3 8 27 ... %e A100461 * * * * 7 26 ... %e A100461 * * * * * 25 ... %e A100461 and triangle begins: %e A100461 1; %e A100461 1, 2; %e A100461 1, 2, 4; %e A100461 3, 4, 6, 8; %e A100461 7, 8, 9, 12, 16; %e A100461 25, 26, 27, 28, 30, 32; %e A100461 49, 50, 51, 52, 55, 60, 64; %e A100461 109, 110, 111, 112, 115, 120, 126, 128; %t A100461 t[n_, k_]:= t[n, k]= If[k==1, 2^(n-1), (n-k+1)*Floor[(t[n, k-1] -1)/(n-k+1)]]; %t A100461 Table[t[n, n-k+1], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Apr 07 2023 *) %o A100461 (Magma) %o A100461 function t(n,k) // t = A100461 %o A100461 if k eq 1 then return 2^(n-1); %o A100461 else return (n-k+1)*Floor((t(n,k-1) -1)/(n-k+1)); %o A100461 end if; %o A100461 end function; %o A100461 [t(n,n-k+1): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 07 2023 %o A100461 (SageMath) %o A100461 def t(n,k): # t = A100461 %o A100461 if (k==1): return 2^(n-1) %o A100461 else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1)) %o A100461 flatten([[t(n,n-k+1) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Apr 07 2023 %Y A100461 Cf. A100452, A100462, A119444. %K A100461 nonn,tabl %O A100461 1,3 %A A100461 _N. J. A. Sloane_, Nov 22 2004