This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100471 #33 Sep 23 2019 03:38:44 %S A100471 1,1,2,2,4,4,7,8,11,13,18,20,27,32,40,44,60,67,82,93,114,129,161,175, %T A100471 209,239,285,315,372,416,484,545,631,698,811,890,1027,1146,1304,1437, %U A100471 1631,1805,2042,2252,2539,2785,3143,3439,3846,4226,4722,5159 %N A100471 Number of integer partitions of n whose sequence of frequencies is strictly increasing. %H A100471 Vaclav Kotesovec, <a href="/A100471/b100471.txt">Table of n, a(n) for n = 0..8000</a> (terms 0..1000 from Alois P. Heinz) %e A100471 a(4) = 4 because of the 5 unrestricted partitions of 4, only one, 3+1 uses each of its summands just once and 1,1 is not an increasing sequence. %e A100471 From _Gus Wiseman_, Jan 23 2019: (Start) %e A100471 The a(1) = 1 through a(8) = 11 integer partitions: %e A100471 (1) (2) (3) (4) (5) (6) (7) (8) %e A100471 (11) (111) (22) (311) (33) (322) (44) %e A100471 (211) (2111) (222) (511) (422) %e A100471 (1111) (11111) (411) (4111) (611) %e A100471 (3111) (22111) (2222) %e A100471 (21111) (31111) (5111) %e A100471 (111111) (211111) (41111) %e A100471 (1111111) (221111) %e A100471 (311111) %e A100471 (2111111) %e A100471 (11111111) %e A100471 (End) %p A100471 b:= proc(n,i,t) option remember; %p A100471 if n<0 then 0 %p A100471 elif n=0 then 1 %p A100471 elif i=1 then `if`(n>t, 1, 0) %p A100471 elif i=0 then 0 %p A100471 else b(n, i-1, t) %p A100471 +add(b(n-i*j, i-1, j), j=t+1..floor(n/i)) %p A100471 fi %p A100471 end: %p A100471 a:= n-> b(n, n, 0): %p A100471 seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 21 2011 %t A100471 b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n==0, 1, i==1, If[n>t, 1, 0], i == 0, 0 , True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t+1, Floor[n/i]}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Mar 16 2015, after _Alois P. Heinz_ *) %t A100471 Table[Length[Select[IntegerPartitions[n],OrderedQ@*Split]],{n,20}] (* _Gus Wiseman_, Jan 23 2019 *) %o A100471 (Haskell) %o A100471 a100471 n = p 0 (n + 1) 1 n where %o A100471 p m m' k x | x == 0 = if m < m' || m == 0 then 1 else 0 %o A100471 | x < k = 0 %o A100471 | m == 0 = p 1 m' k (x - k) + p 0 m' (k + 1) x %o A100471 | otherwise = p (m + 1) m' k (x - k) + %o A100471 if m < m' then p 0 m (k + 1) x else 0 %o A100471 -- _Reinhard Zumkeller_, Dec 27 2012 %Y A100471 Cf. A000219, A000837 (frequencies are relatively prime), A047966 (frequencies are equal), A098859 (frequencies are distinct), A100881, A100882, A100883, A304686 (Heinz numbers of these partitions). %K A100471 nonn %O A100471 0,3 %A A100471 _David S. Newman_, Nov 21 2004 %E A100471 Corrected and extended by _Vladeta Jovovic_, Nov 24 2004 %E A100471 Name edited by _Gus Wiseman_, Jan 23 2019