cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100526 Number of local binary search trees (i.e., labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) with n vertices such that the root has only one child.

This page as a plain text file.
%I A100526 #26 Mar 28 2023 08:00:35
%S A100526 1,2,6,28,180,1476,14728,173216,2346480,35981200,616111056,
%T A100526 11652662880,241259095168,5427319729664,131818482923520,
%U A100526 3437894427590656,95825936705566464,2842834581982211328,89435890422890433280,2974081497762693670400,104234511362034627442176
%N A100526 Number of local binary search trees (i.e., labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) with n vertices such that the root has only one child.
%H A100526 G. C. Greubel, <a href="/A100526/b100526.txt">Table of n, a(n) for n = 1..400</a>
%H A100526 C. Chauve, S. Dulucq and A. Rechnitzer, <a href="https://doi.org/10.1006/jcta.2000.3121">Enumerating alternating trees</a>, J. Combin. Theory Ser. A 94 (2001), 142-151.
%H A100526 A. Postnikov, <a href="https://doi.org/10.1006/jcta.1996.2735">Intransitive Trees</a>, J. Combin. Theory Ser. A 79 (1997), 360-366.
%F A100526 a(n) = (1/2^(n-1))*Sum_{k=1..n} k^(n-1)*binomial(n, k).
%F A100526 a(n) = n*A007889(n-1).
%F A100526 E.g.f.: -2*LambertW(-x*exp(x/2)/2). - _Paul D. Hanna_, Jun 07 2016, after Vladeta Jovovic's formula in A038049
%F A100526 E.g.f.: G( sqrt( G(x^2*exp(x)) ) ), where G( sqrt( G(x^2*exp(-x)) ) ) = x, and G(x) is the e.g.f. of A273952. - _Paul D. Hanna_, Jun 06 2016
%F A100526 a(n) ~ sqrt(1 + LambertW(exp(-1)))*n^(n-1) / (2^(n-1) * exp(n) * LambertW(exp(-1))^n). - _Vaclav Kotesovec_, Jun 23 2016
%e A100526 a(3)=6 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i).
%e A100526 E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! +...
%e A100526 Given G(x) such that G( sqrt( G(x^2*exp(-x)) ) ) = x, where
%e A100526 G(x) = x + 1/2*x^2 + 1/8*x^3 + 1/12*x^4 + 77/384*x^5 + 23/120*x^6 + 2077/46080*x^7 + 179/5040*x^8 + 239525/2064384*x^9 +...+ A273952(n)*x^n/(2^(n-1)*(n-1)!) +...
%e A100526 then A(x) = G( sqrt( G(x^2*exp(x)) ) ). - _Paul D. Hanna_, Jun 06 2016
%p A100526 seq((1/2^(n-1))*add(k^(n-1)*binomial(n,k),k=1..n),n=1..22);
%t A100526 Rest[CoefficientList[Series[-2*LambertW[-x*E^(x/2)/2], {x, 0, 20}], x] * Range[0, 20]!] (* _Vaclav Kotesovec_, Jun 23 2016 *)
%o A100526 (PARI) /* Egf A(x) = G(sqrt(G(x^2*exp(x)))) if G(sqrt(G(x^2*exp(-x)))) = x */
%o A100526 {a(n) = my(G=x); for(i=1,n, G = serreverse( sqrt( subst(G,x, x^2*exp(-x +O(x^n))) ) )); A = subst(G,x,sqrt(subst(G,x,x^2*exp(x +O(x^n))))); n!*polcoeff(A,n)}
%o A100526 for(n=1,30,print1(a(n),", ")) \\ _Paul D. Hanna_, Jun 06 2016
%o A100526 (Magma) [2^(1-n)*(&+[ k^(n-1)*Binomial(n, k): k in [1..n]]): n in [1..40]]; // _G. C. Greubel_, Mar 27 2023
%o A100526 (SageMath)
%o A100526 def A100526(n): return 2^(1-n)*sum( k^(n-1)*binomial(n, k) for k in range(1,n+1) )
%o A100526 [A100526(n) for n in range(1,40)] # _G. C. Greubel_, Mar 27 2023
%Y A100526 Cf. A007889, A273952.
%K A100526 nonn
%O A100526 1,2
%A A100526 _Emeric Deutsch_, Nov 24 2004