cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100532 The first four numbers of this sequence are the primes 2,3,5,7. The other terms are calculated by adding the previous four terms.

This page as a plain text file.
%I A100532 #21 Jul 07 2022 02:19:59
%S A100532 2,3,5,7,17,32,61,117,227,437,842,1623,3129,6031,11625,22408,43193,
%T A100532 83257,160483,309341,596274,1149355,2215453,4270423,8231505,15866736,
%U A100532 30584117,58952781,113635139,219038773,422210810,813837503,1568722225,3023809311,5828579849
%N A100532 The first four numbers of this sequence are the primes 2,3,5,7. The other terms are calculated by adding the previous four terms.
%H A100532 Martin Burtscher, Igor Szczyrba, and RafaƂ Szczyrba, <a href="https://www.emis.de/journals/JIS/VOL18/Szczyrba/sz3.html">Analytic Representations of the n-anacci Constants and Generalizations Thereof</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
%H A100532 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1).
%F A100532 a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) where n >= 5 and a(1) = 2, a(2) = 3, a(3) = 5 and a(4) = 7.
%F A100532 G.f.:  x*(1-x)*(2+3*x+3*x^2) / ( 1-x-x^2-x^3-x^4 ). - _R. J. Mathar_, Feb 03 2011
%e A100532 The fifth term is 2 + 3 + 5 + 7 = 17.
%t A100532 LinearRecurrence[{1,1,1,1}, {2,3,5,7}, 40] (* _G. C. Greubel_, Jun 30 2022 *)
%o A100532 (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,1,1]^(n-1)*[2;3;5;7])[1,1] \\ _Charles R Greathouse IV_, Nov 01 2018
%o A100532 (Magma) [n le 4 select NthPrime(n) else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4): n in [1..41]]; // _G. C. Greubel_, Jun 30 2022
%o A100532 (SageMath)
%o A100532 @CachedFunction
%o A100532 def a(n): # a = A100532
%o A100532     if (n<5): return nth_prime(n)
%o A100532     else: return sum( a(n-j) for j in (1..4))
%o A100532 [a(n) for n in (1..40)] # _G. C. Greubel_, Jun 30 2022
%Y A100532 Cf. A000078, A001631.
%K A100532 easy,nonn
%O A100532 1,1
%A A100532 _Parthasarathy Nambi_, Nov 24 2004