This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100536 #75 Jul 06 2025 22:59:30 %S A100536 1,10,25,46,73,106,145,190,241,298,361,430,505,586,673,766,865,970, %T A100536 1081,1198,1321,1450,1585,1726,1873,2026,2185,2350,2521,2698,2881, %U A100536 3070,3265,3466,3673,3886,4105,4330,4561,4798,5041,5290,5545,5806,6073,6346,6625 %N A100536 a(n) = 3*n^2 - 2. %C A100536 Integers k such that 3*k + 6 is a perfect square. - _Gary Detlefs_, Feb 22 2010 %C A100536 Binomial transform of (1, 9, 6, 0, 0, 0, 0, 0, 0, 0, ...). - _Philippe Deléham_, Mar 16 2014 %H A100536 G. C. Greubel, <a href="/A100536/b100536.txt">Table of n, a(n) for n = 1..5000</a> %H A100536 A. J. C. Cunningham, <a href="/A056107/a056107.pdf">Factorisation of N and N' = (x^n -+ y^n) / (x -+ y) [when x-y=n]</a>, Messenger Math., 54 (1924), 17-21 [Incomplete annotated scanned copy] %H A100536 John Elias, <a href="/A100536/a100536.png">Illustration of Initial Terms: triple diamond configuration</a> %H A100536 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1) %F A100536 a(n) = a(n-1) + 6*n - 3 for n>1. - _Vincenzo Librandi_, Nov 17 2010 %F A100536 G.f.: x*(1+7*x-2*x^2) / (1-x)^3. - _R. J. Mathar_, Oct 03 2011 %F A100536 -a(n) = (k-1)^2 + k^2 + (k+1)^2, where k = n*sqrt(-1). - _Bruno Berselli_, Jan 24 2014 %F A100536 a(T(n)+1) = T(n+1)^2 + T(n)^2 + T(n-1)^2, where T = A000217. - _Bruno Berselli_, May 14 2014 %F A100536 a(n+1) = binomial(n,0) + 9*binomial(n,1) + 6*binomial(n,2). - _Philippe Deléham_, Mar 16 2014 %F A100536 a(n) = floor(1/(n*tan(1/n) - 1)). - _Clark Kimberling_, Dec 02 2014 %F A100536 E.g.f.: 2 - (2 - 3*x - 3*x^2)*exp(x). - _G. C. Greubel_, Mar 27 2023 %F A100536 (3*n)^2 = a(n-1) + a(n) + a(n+1). - _Nicolas Bělohoubek_, Jul 02 2025 %e A100536 From _Philippe Deléham_, Mar 16 2014: (Start) %e A100536 a(2)=10 after the evaluation of a(2) = 3*(2^2) - 2 = 3*(4) - 2 = 12 - 2 = 10. %e A100536 a(1) = 1*1 = 1; %e A100536 a(2) = 1*1 + 9*1 = 10; %e A100536 a(3) = 1*1 + 9*2 + 6*1 = 25; %e A100536 a(4) = 1*1 + 9*3 + 6*3 = 46; %e A100536 a(5) = 1*1 + 9*4 + 6*6 = 73; etc. (End) %t A100536 3*Range[50]^2-2 (* _Vladimir Joseph Stephan Orlovsky_, Feb 19 2011 *) %t A100536 CoefficientList[Series[x (1+7x-2x^2)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[{3,-3,1},{1,10,25},50] (* _Harvey P. Dale_, Nov 20 2023 *) %o A100536 (PARI) a(n)=3*n^2-2 \\ _Charles R Greathouse IV_, Oct 07 2015 %o A100536 (Magma) [3*n^2-2: n in [1..50]]; // _G. C. Greubel_, Mar 27 2023 %o A100536 (SageMath) [3*n^2 -2 for n in range(1,51)] # _G. C. Greubel_, Mar 27 2023 %Y A100536 Cf. A000217, A000124, A054000. %K A100536 nonn,easy %O A100536 1,2 %A A100536 Tyler J Newman (Tylerjnewman(AT)adelphia.net), Nov 27 2004