cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100569 Number of labeled n-node oriented graphs without endpoints.

This page as a plain text file.
%I A100569 #13 Feb 23 2019 07:03:06
%S A100569 1,1,1,9,337,37889,11410545,9368733289,21760617258977,
%T A100569 146872848650637249,2927557787922534645793,
%U A100569 173801937725990883065857673,30857177979379449393077427767217,16413568090264759380752395628891885377,26177914283033566658965502231213434987939601
%N A100569 Number of labeled n-node oriented graphs without endpoints.
%H A100569 Andrew Howroyd, <a href="/A100569/b100569.txt">Table of n, a(n) for n = 0..50</a>
%F A100569 E.g.f.: exp(x^2)*(Sum_{n >= 0} 3^(n*(n-1)/2)*(x/exp(2*x))^n/n!).
%t A100569 m = 14;
%t A100569 egf = Exp[x^2]*Sum[3^(n (n - 1)/2)*(x/Exp[2 x])^n/n!, {n, 0, m}];
%t A100569 a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
%t A100569 Table[a[n], {n, 0, m}] (* _Jean-François Alcover_, Feb 23 2019 *)
%o A100569 (PARI) seq(n)={my(A=x/exp(2*x+O(x^n))); Vec(serlaplace(exp(x^2 + O(x*x^n)) * sum(k=0, n, 3^binomial(k, 2)*A^k/k!)))} \\ _Andrew Howroyd_, Sep 09 2018
%Y A100569 Cf. A059167.
%K A100569 nonn
%O A100569 0,4
%A A100569 Goran Kilibarda, Zoran Maksimovic, _Vladeta Jovovic_, Jan 02 2005
%E A100569 Terms a(13) and beyond from _Andrew Howroyd_, Sep 09 2018