cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100575 Half the number of permutations of 0..n with exactly two maxima.

This page as a plain text file.
%I A100575 #38 Sep 08 2022 08:45:15
%S A100575 0,0,1,8,44,208,912,3840,15808,64256,259328,1042432,4180992,16748544,
%T A100575 67047424,268304384,1073463296,4294377472,17178624000,68716855296,
%U A100575 274872401920,1099500093440,4398022393856,17592135712768,70368639320064
%N A100575 Half the number of permutations of 0..n with exactly two maxima.
%C A100575 Coefficient of the e^(2x) term in the numerator of the n-th derivative of 1/(2-e^x).
%C A100575 This sequence, multiplied by 8, appears in a combinatorial problem about DNA chips. - Bruno Petazzoni (bruno(AT)enix.org), Apr 18 2007
%H A100575 G. C. Greubel, <a href="/A100575/b100575.txt">Table of n, a(n) for n = 0..1000</a>
%H A100575 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-20,16).
%F A100575 From _Paul Barry_, Jan 28 2005: (Start)
%F A100575 G.f.: x^2/((1-2*x)^2*(1-4*x)).
%F A100575 a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*floor(k/2). (End)
%F A100575 a(n) = 4^(n-1) - (n+1)*2^(n-2). - Bruno Petazzoni (bruno(AT)enix.org), Apr 18 2007
%F A100575 a(n+1) = Sum_{k=0..n} k*2^(2*n-1-k). - _Philippe Deléham_ , Oct 29 2013
%F A100575 E.g.f.: (1/4)*(exp(4*x) - (1 + 2*x)*exp(2*x)). - _G. C. Greubel_, Mar 21 2022
%e A100575 a(2)=1 because there are two maxima in 2,0,1 and 1,0,2
%t A100575 d = Drop[ Flatten[ CoefficientList[ Table[ Simplify[ D[1/(2 - E^x), {x, n}]*(E^x - 2)^(n + 1)/E^x], {n, 2, 24}], E^x]], 1]; a = {}; Do[AppendTo[a, Abs[d[[n(n + 1)/2]]]], {n, 23}]; a (* _Robert G. Wilson v_, Dec 01 2004 *)
%t A100575 LinearRecurrence[{8,-20,16},{0,0,1},30] (* _Harvey P. Dale_, Apr 21 2020 *)
%o A100575 (Magma) [4^(n-1)-(n+1)*2^(n-2): n in [0..30]]; // _Vincenzo Librandi_, Jul 18 2019
%o A100575 (Sage) [2^(n-2)*(2^n -(n+1)) for n in (0..30)] # _G. C. Greubel_, Mar 21 2022
%Y A100575 Cf. A000431.
%K A100575 nonn
%O A100575 0,4
%A A100575 _Anthony C Robin_, Nov 29 2004
%E A100575 Edited by _Robert G. Wilson v_, Dec 01 2004
%E A100575 Definition corrected by Bruno Petazzoni (bruno(AT)enix.org), Apr 13 2007
%E A100575 New and simpler definition from _R. H. Hardin_, Aug 09 2007