This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100596 #21 Dec 27 2024 13:49:33 %S A100596 2,8,15,33,52,205,751 %N A100596 Numbers k such that (prime(k)-1)! + prime(k)^10 is prime. %C A100596 k = {2, 8, 15, 33, 52, 205} yields primes p(k) = {3, 19, 47, 137, 239, 1259}. There are no more such k up to k=150. Computed in collaboration with _Ray Chandler_. %C A100596 a(7) > 600. - _Jinyuan Wang_, Apr 10 2020 %C A100596 a(8) > 2700. - _Michael S. Branicky_, Jul 03 2024 %F A100596 Primes of the form (prime(k)-1)! + prime(k)^10, where prime(k) is the k-th prime. %e A100596 a(1) = 2 because (prime(2)-1)! + prime(2)^10 = (3-1)! + 3^10 = 59051 is the smallest prime of that form. %e A100596 a(2) = 8 because (prime(8)-1)! + prime(8)^10 = (19-1)! + 19^10 = 6408504771985801 is the 2nd smallest prime of that form. %t A100596 lst={};Do[p=Prime[n];If[PrimeQ[(p-1)!+p^10], AppendTo[lst, n]], {n, 10^2}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 08 2008 *) %t A100596 Select[Range[250],PrimeQ[(Prime[#]-1)!+Prime[#]^10]&] (* The program generates the first 6 terms of the sequence. *) (* _Harvey P. Dale_, Dec 27 2024 *) %o A100596 (Python) %o A100596 from math import factorial %o A100596 from sympy import isprime, prime %o A100596 def afind(limit, startat=1): %o A100596 for k in range(startat, limit+1): %o A100596 s = str(k) %o A100596 pk = prime(k) %o A100596 if isprime( factorial(pk-1) + pk**10 ): %o A100596 print(k, end=", ") %o A100596 afind(100) # _Michael S. Branicky_, Nov 30 2021 %Y A100596 Cf. A100595, A100858. %K A100596 nonn,hard,more %O A100596 1,1 %A A100596 _Jonathan Vos Post_, Nov 30 2004 %E A100596 a(6) from _Jinyuan Wang_, Apr 10 2020 %E A100596 a(7) from _Michael S. Branicky_, Nov 30 2021