cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100597 Based on the first matrix inverse of transformed Bernoulli numbers as defined in the Comments line.

This page as a plain text file.
%I A100597 #16 Jan 14 2015 16:05:00
%S A100597 1,1,2,5,14,49,258,1385,1342,-13739,1727362,20549165,-892047378,
%T A100597 -13084315271,979519187138,16158974238545,-1747908612654946,
%U A100597 -32246548780758179,4903305033480792642,100032668564662494485,-20685044415403212103730,-462550882810484735564351
%N A100597 Based on the first matrix inverse of transformed Bernoulli numbers as defined in the Comments line.
%C A100597 A family of polynomials is defined by P(0,x) = u(0), P(n,x) = u(n) +x*Sum_{i=0..n-1} u(i)*P(n-i-1,x), where u(n) is the n-th Bernoulli number. The coefficients of P(n-1,x) are used to fill the n-th row of the infinite lower triangle matrix M. Then a(n) is given by M^(-1)[n,1] * n!.
%D A100597 P. Curtz, Gazette des Mathematiciens, 1992, 52, p.44.
%D A100597 P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, 55, pp.67-78.
%H A100597 Alois P. Heinz, <a href="/A100597/b100597.txt">Table of n, a(n) for n = 1..100</a>
%e A100597 a(3) = 2, because M = [1; -1/2 1; 1/6 -1 1; ...], M^(-1) = [1; 1/2 1; 1/3 1 1; ...], and (1/3)*3! = 2.
%p A100597 P:= proc(n) option remember; local i, u, x; u:= bernoulli; `if`(n=0, u(0), unapply(expand(u(n) +x *add(u(i) *P(n-i-1)(x), i=0..n-1)), x)) end: a:= n-> (1/Matrix(n, (i, j)-> coeff(P(i-1)(x), x, j-1)))[n, 1] *n!: seq(a(n), n=1..30);  # _Alois P. Heinz_, Oct 12 2009
%t A100597 p[0, x_] = BernoulliB[0]; p[n_, x_] := p[n, x] = BernoulliB[n] + x*Sum[BernoulliB[i]*p[n-i-1, x], {i, 0, n-1}]; t[m_] := Table[ PadRight[CoefficientList[p[n, x], x], m+1], {n, 0, m}]; mmax = 20; Inverse[t[mmax-1]][[All, 1]]*Range[mmax]!
%t A100597 (* _Jean-François Alcover_, Jun 29 2011 *)
%Y A100597 Cf. A027641/A027642, A130620, A141411.
%K A100597 sign
%O A100597 1,3
%A A100597 _Paul Curtz_, Jun 06 2007
%E A100597 Edited and more terms from _Alois P. Heinz_, Oct 12 2009