This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100607 #13 Apr 28 2025 14:43:17 %S A100607 223,227,233,257,277,337,353,373,523,557,577,727,733,757,773,1123, %T A100607 1153,1327,1373,1723,1733,1753,1777,1933,1973,2113,2137,2213,2237, %U A100607 2243,2267,2273,2293,2297,2311,2333,2341,2347,2357,2371,2377,2383,2389,2417,2437 %N A100607 Concatenated primes of order 3. %C A100607 This is a subset of all concatenated primes (A019549). Some of these primes have dual order - example 223. It can be viewed as order two(2 and 23) or as order three (2,2 and 3). %C A100607 There are 15 such numbers less than 1000 and 202 less than 10^4. - _Robert G. Wilson v_, Dec 03 2004 %H A100607 Robert Israel, <a href="/A100607/b100607.txt">Table of n, a(n) for n = 1..10000</a> %H A100607 Chris Caldwell, <a href="http://www.utm.edu/research/primes/lists/small/1000.txt">The First thousand primes</a>. %F A100607 Each of the listed primes is made from three primes (same or different). %e A100607 257 is in the sequence since it is made from three (distinct) primes. %p A100607 filter:= proc(n) local m, i, j, ni, nj, np, n3; %p A100607 if not isprime(n) then return false fi; %p A100607 m:= ilog10(n); %p A100607 for i from 1 to m-1 do %p A100607 ni:= n mod 10^i; %p A100607 if ni < 10^(i-1) or not isprime(ni) then next fi; %p A100607 np:= (n-ni)/10^i; %p A100607 for j from 1 to m-i do %p A100607 nj:= np mod 10^j; %p A100607 if nj < 10^(j-1) then next fi; %p A100607 n3:= (np-nj)/10^j; %p A100607 if isprime(nj) and isprime(n3) then return true fi; %p A100607 od od; %p A100607 false %p A100607 end proc; %p A100607 select(filter, [seq(i,i=3..10000,2)]); # _Robert Israel_, Apr 28 2025 %t A100607 (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) t = Sort[ KSubsets[ Flatten[ Table[ Prime[ Range[25]], {3}]], 3]]; lst = {}; Do[k = 1; u = Permutations[t[[n]]]; While[k < Length[u], v = FromDigits[ Flatten[ IntegerDigits /@ u[[k]]]]; If[ PrimeQ[v], AppendTo[lst, v]]; k++ ], {n, Length[t]}]; Take[ Union[lst], 45] (* _Robert G. Wilson v_, Dec 03 2004 *) %Y A100607 Cf. A019549, A100633, A383195. %K A100607 easy,nonn,base %O A100607 1,1 %A A100607 _Parthasarathy Nambi_, Nov 30 2004 %E A100607 Corrected and extended by _Robert G. Wilson v_, Dec 03 2004