cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100615 Let N(n)(x) be the Nørlund polynomials as defined in A001898, with N(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of N(n)(2).

This page as a plain text file.
%I A100615 #39 May 18 2023 17:30:07
%S A100615 1,-1,5,-1,1,1,-5,-1,7,3,-15,-5,7601,691,-91,-35,3617,3617,-745739,
%T A100615 -43867,3317609,1222277,-5981591,-854513,5436374093,1181820455,
%U A100615 -213827575,-76977927,213745149261,23749461029,-249859397004145,-8615841276005,238988952277727,84802531453387
%N A100615 Let N(n)(x) be the Nørlund polynomials as defined in A001898, with N(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of N(n)(2).
%C A100615 With the signs of A359738, the rational sequence reflects the identity B(z)^2 = (z + 1)*B(z) - z*B'(z), that goes back to Euler, where B(z) = z/(1 - e^(-z)) is the e.g.f. of the Bernoulli numbers with B(1) = 1/2. - _Peter Luschny_, Jan 23 2023
%D A100615 F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
%H A100615 Robert Israel, <a href="/A100615/b100615.txt">Table of n, a(n) for n = 0..575</a>
%H A100615 Madeline Beals-Reid, <a href="https://journals.calstate.edu/pump/article/view/3549">A Quadratic Relation in the Bernoulli Numbers</a>, The Pump Journal of Undergraduate Research, 6 (2023), 29-39.
%F A100615 E.g.f.: (x/(exp(x)-1))^2. - _Vladeta Jovovic_, Feb 27 2006
%F A100615 a(n) = numerator(Sum_{k=0..n}(-1)^k*k!/(k+1)*Sum_{j=0..n-k} C(n,j)*Stirling2(n-j,k)*B(j)), where B(n) is Bernoulli numbers. - _Vladimir Kruchinin_, Jun 02 2015
%F A100615 a(n) = numerator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - _Fabián Pereyra_, Mar 02 2020
%F A100615 a(n) = -numerator(n*B(n-1) + (n-1)*B(n)) for n >= 1, where B(n) = Bernoulli(n, 0). - _Peter Luschny_, May 18 2023
%e A100615 1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
%p A100615 S:= series((x/(exp(x)-1))^2, x, 41):
%p A100615 seq(numer(coeff(S,x,j)*j!), j=0..40); # _Robert Israel_, Jun 02 2015
%p A100615 # Second program:
%p A100615 a := n -> if n = 0 then 1 else numer(-n*bernoulli(n-1) - (n-1)*bernoulli(n)) fi:
%p A100615 seq(a(n), n = 0..33);  # _Peter Luschny_, May 18 2023
%t A100615 Table[Numerator@NorlundB[n, 2], {n, 0, 32}] (* _Arkadiusz Wesolowski_, Oct 22 2012 *)
%t A100615 Table[If[n == 0, 1, -Numerator[n*BernoulliB[n - 1] + (n - 1)*BernoulliB[n]]], {n, 0,  33}] (* _Peter Luschny_, May 18 2023 *)
%o A100615 (Maxima) a(n):=sum((-1)^k*k!/(k+1)*sum(binomial(n,j)*stirling2(n-j,k)*bern(j),j,0,n-k),k,0,n); /* _Vladimir Kruchinin_, Jun 02 2015 */
%o A100615 (PARI) a(n) = numerator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ _Michel Marcus_, Mar 03 2020
%Y A100615 Cf. A001898, A027641, A027642, A100616, A359738.
%K A100615 sign,frac
%O A100615 0,3
%A A100615 _N. J. A. Sloane_, Dec 03 2004