cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100616 Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives denominators of B(n)(2).

This page as a plain text file.
%I A100616 #22 Mar 26 2020 03:21:47
%S A100616 1,1,6,2,10,6,42,6,30,10,22,6,2730,210,6,2,34,30,798,42,330,110,46,6,
%T A100616 2730,546,6,2,290,30,14322,462,510,170,2,6,54834,51870,6,2,4510,330,
%U A100616 1806,42,690,46,94,6,46410,6630,66,22,530,30,798,798,174,290,118,6,56786730
%N A100616 Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives denominators of B(n)(2).
%D A100616 F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
%H A100616 Robert Israel, <a href="/A100616/b100616.txt">Table of n, a(n) for n = 0..1000</a>
%F A100616 E.g.f.: (x/(exp(x)-1))^2. - _Vladeta Jovovic_, Feb 27 2006
%F A100616 a(n) = denominator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - _Fabián Pereyra_, Mar 02 2020
%e A100616 1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
%p A100616 S:= series((x/(exp(x)-1))^2, x, 101):
%p A100616 seq(denom(coeff(S,x,n)*n!), n=0..100); # _Robert Israel_, Jun 02 2015
%t A100616 Table[Denominator@NorlundB[n, 2], {n, 0, 59}] (* _Arkadiusz Wesolowski_, Oct 22 2012 *)
%o A100616 (PARI) a(n) = denominator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ _Michel Marcus_, Mar 03 2020
%Y A100616 Cf. A001898, A027641, A027642, A100615.
%K A100616 nonn,frac
%O A100616 0,3
%A A100616 _N. J. A. Sloane_, Dec 03 2004