This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100619 #27 Jul 03 2020 14:55:05 %S A100619 1,2,3,1,1,1,2,1,2,1,2,3,1,1,2,3,1,1,2,3,1,1,1,2,1,2,3,1,1,1,2,1,2,3, %T A100619 1,1,1,2,1,2,1,2,3,1,1,2,3,1,1,1,2,1,2,1,2,3,1,1,2,3,1,1,1,2,1,2,1,2, %U A100619 3,1,1,2,3,1,1,2,3,1,1,1,2,1,2,3,1,1,1,2,1,2,1,2,3,1,1,2,3,1,1,2,3,1,1,1,2 %N A100619 Fixed point of the morphism 1 -> 12, 2 -> 31, 3 -> 1, starting from a(1) = 1. %C A100619 Sirvent comments that in spite of the similarity of this map to the one in A092782, the two sequences have very different properties. They have different complexities, different Rauzy fractals, etc. %H A100619 G. C. Greubel, <a href="/A100619/b100619.txt">Table of n, a(n) for n = 1..10000</a> %H A100619 Scott Balchin and Dan Rust, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Rust/rust3.html">Computations for Symbolic Substitutions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1. %H A100619 Victor F. Sirvent, <a href="http://dx.doi.org/10.1016/S0893-9659(98)00121-9">Semigroups and the self-similar structure of the flipped tribonacci substitution</a>, Applied Math. Letters, 12 (1999), 25-29. %H A100619 Victor F. Sirvent, <a href="https://doi.org/10.36045/bbms/1103055617">The common dynamics of the Tribonacci substitutions</a>, Bulletin of the Belgian Mathematical Society-Simon Stevin 7.4 (2000): 571-582. %H A100619 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a> %p A100619 f(1):= (1, 2): f(2):= (3, 1): f(3):= (1): B:= [1]: %p A100619 for i from 1 to 12 do B:= map(f, B) od: %p A100619 B; # _N. J. A. Sloane_, Aug 17 2018 %t A100619 Nest[ Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {3, 1}, 3 -> {1}})]}], {1}, 7][[1]] (* _Robert G. Wilson v_, Feb 26 2005 *) %Y A100619 Cf. A092782. %K A100619 nonn,easy %O A100619 1,2 %A A100619 _N. J. A. Sloane_, Dec 03 2004 %E A100619 More terms from _Robert G. Wilson v_, Dec 05 2004