cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100633 Primes that are the decimal concatenation of three separate primes.

This page as a plain text file.
%I A100633 #10 Apr 28 2025 14:44:23
%S A100633 257,523,1123,1153,1327,1373,1723,1753,1973,2113,2137,2237,2293,2297,
%T A100633 2311,2341,2347,2357,2371,2377,2383,2389,2417,2437,2473,2477,2531,
%U A100633 2543,2579,2593,2617,2677,2711,2713,2719,2729,2731,2741,2753,2767,2789,2797
%N A100633 Primes that are the decimal concatenation of three separate primes.
%H A100633 Robert Israel, <a href="/A100633/b100633.txt">Table of n, a(n) for n = 1..10000</a>
%p A100633 filter:= proc(n) local m,i,j,ni,nj,np,n3;
%p A100633  if not isprime(n) then return false fi;
%p A100633  m:= ilog10(n);
%p A100633  for i from 1 to m-1 do
%p A100633    ni:= n mod 10^i;
%p A100633    if ni < 10^(i-1) or not isprime(ni) then next fi;
%p A100633    np:= (n-ni)/10^i;
%p A100633    for j from 1 to m-i do
%p A100633      nj:= np mod 10^j;
%p A100633      if nj < 10^(j-1) then next fi;
%p A100633      n3:= (np-nj)/10^j;
%p A100633      if nops({ni,nj,n3})=3 and isprime(nj) and isprime(n3) then return true fi;
%p A100633  od od;
%p A100633  false
%p A100633 end proc;
%p A100633 select(filter, [seq(i,i=3..10000,2)]); # _Robert Israel_, Apr 28 2025
%t A100633 (*first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) t = KSubsets[ Prime[ Range[25]], 3]; lst = {}; Do[k = 1; u = Permutations[ t[[n]]]; While[k < 7, v = FromDigits[ Flatten[IntegerDigits /@ u[[k]]]]; If[ PrimeQ[v], AppendTo[lst, v]]; k++ ], {n, Binomial[25, 3]}]; Take[ Union[lst], 42]
%Y A100633 Cf. A100607, A383195.
%K A100633 nonn,base
%O A100633 1,1
%A A100633 _Robert G. Wilson v_, Dec 03 2004
%E A100633 Edited by _Charles R Greathouse IV_, Apr 29 2010