This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100634 #32 Feb 16 2025 08:32:55 %S A100634 0,2,6,6,22,22,86,86,86,86,1110,1110,5206,5206,5206,5206,70742,70742, %T A100634 332886,332886,332886,332886,4527190,4527190,4527190,4527190,4527190, %U A100634 4527190,272962646,272962646,1346704470,1346704470,1346704470,1346704470,1346704470 %N A100634 a(n) is the decimal equivalent of the binary number whose k-th least significant bit is 1 iff k is a prime number and k <= n. %C A100634 1 is not considered prime. If 1 were to be considered prime, each term would be incremented by 1. %H A100634 T. D. Noe, <a href="/A100634/b100634.txt">Table of n, a(n) for n = 1..300</a> %H A100634 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LeastSignificantBit.html">Least Significant Bit</a> %e A100634 a(5) = 22 because the k-th least significant bits 1,2,3,4,5 are prime for 2,3,5 and not prime for 1,4. So k=1->0, k=2->1, k=3->1, k=4->0 and k=5->1 gives the bit sequence 10110, which is 2 + 4 + 16 = 22 in its decimal expansion. %p A100634 a:= proc(n) option remember; `if`(n<2, 0, %p A100634 a(n-1)+`if`(isprime(n), 2^(n-1), 0)) %p A100634 end: %p A100634 seq(a(n), n=1..35); # _Alois P. Heinz_, Apr 01 2024 %t A100634 Table[FromDigits[Reverse[Table[If[PrimeQ[k] == True, 1, 0], {k, 1, N}]], 2], {N, 1, 40}] %t A100634 FoldList[Plus, If[PrimeQ[#], 2^#/2, 0] & /@ Range@40] (* _David Dewan_, Apr 01 2024 *) %o A100634 (PARI) Sum(an)={ L=#binary(an)-1; k=2; s=0; pow2=2; %o A100634 forstep(j=L, 2, -1, %o A100634 if(isprime(k), s+=pow2); %o A100634 k++; pow2*=2); %o A100634 return(s) }; %o A100634 n=1; an=0; %o A100634 while(an<=1346704470, %o A100634 an+=Sum(an); print1(an,", "); n++; %o A100634 while(!isprime(n), print1(an,", "); n++); %o A100634 an=2^(n-1) %o A100634 ) \\ _Washington Bomfim_, Jan 17 2011 %Y A100634 Cf. A000040, A080355, A080339, A072762. %K A100634 nonn,base %O A100634 1,2 %A A100634 Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 02 2004