cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100655 Triangle read by rows giving coefficients in Bernoulli polynomials as defined in A001898, after multiplication by the common denominators A001898(n).

This page as a plain text file.
%I A100655 #74 Feb 06 2021 05:17:33
%S A100655 1,0,-1,0,-1,3,0,0,1,-1,0,2,5,-30,15,0,0,-2,-5,10,-3,0,-16,-42,91,315,
%T A100655 -315,63,0,0,16,42,-7,-105,63,-9,0,144,404,-540,-2345,-840,3150,-1260,
%U A100655 135,0,0,-144,-404,-100,665,448,-630,180,-15,0,-768,-2288,2068,11792,8195,-8085,-8778,6930,-1485,99
%N A100655 Triangle read by rows giving coefficients in Bernoulli polynomials as defined in A001898, after multiplication by the common denominators A001898(n).
%C A100655 Let p(n, x) = Sum_{k=0..n} T(n, k)*x^k, then the polynomials (-1)^n*p(n; x)/x are called 'Stirling polynomials' by Knuth et al. (CMath, eq. 6.45). - _Peter Luschny_, Feb 05 2021
%D A100655 Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 1st ed.; Addison-Wesley, 1989, p. 257.
%H A100655 F. N. David, <a href="https://archive.org/details/probabilitytheor033214mbp/page/n113">Probability Theory for Statistical Methods</a>, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
%H A100655 N. E. Nörlund, <a href="http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN373206070">Vorlesungen ueber Differenzenrechnung</a> Springer 1924, (p. 146).
%F A100655 E.g.f.: (y/(exp(y)-1))^x. - _Vladeta Jovovic_, Feb 27 2006
%F A100655 Let p(n, x) = (Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n))/(Product_{j=1..n} (j-x)), where E2 are the second-order Eulerian numbers (A201637), then T(n, k) = [x^k] M(n+1)*p(n, x), where M(n) are the Minkowski numbers (A053657). - _Peter Luschny_, Feb 05 2021
%e A100655 The Bernoulli polynomials B(0)(x) through B(6)(x) are:
%e A100655         1
%e A100655     -(1/2)* x
%e A100655     (1/12)*(3*x - 1)*x
%e A100655     -(1/8)*(x-1)*x^2
%e A100655    (1/240)*(15*x^3 - 30*x^2 + 5*x + 2)*x
%e A100655    -(1/96)*(x-1)*(3*x^2 - 7*x - 2)*x^2
%e A100655   (1/4032)*(63*x^5 - 315*x^4 + 315*x^3 + 91*x^2 - 42*x - 16)*x
%e A100655 Triangle of coefficients starts:
%e A100655 [0] [1],
%e A100655 [1] [0,  -1],
%e A100655 [2] [0,  -1,   3],
%e A100655 [3] [0,   0,   1,   -1],
%e A100655 [4] [0,   2,   5,  -30,    15],
%e A100655 [5] [0,   0,  -2,   -5,    10,   -3],
%e A100655 [6] [0, -16, -42,   91,   315, -315,   63],
%e A100655 [7] [0,   0,  16,   42,    -7, -105,   63,    -9],
%e A100655 [8] [0, 144, 404, -540, -2345, -840, 3150, -1260, 135].
%p A100655 CoeffList := p -> op(PolynomialTools:-CoefficientList(simplify(p),x)):
%p A100655 E2 := (n, k) -> combinat[eulerian2](n, k): m := n -> mul(j-x, j = 1..n):
%p A100655 Epoly := n -> simplify(expand(add(E2(n, k)*binomial(x+k,2*n), k = 0..n)/m(n))):
%p A100655 poly := n -> Epoly(n)*denom(Epoly(n)):
%p A100655 seq(print(CoeffList(poly(n))), n = 0..8); # _Peter Luschny_, Feb 05 2021
%t A100655 row[n_] := NorlundB[n, x] // Together // Numerator // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Jul 06 2019, after _Peter Luschny_ *)
%o A100655 (Sage) # Formula (83), page 146 in Nörlund.
%o A100655 @cached_function
%o A100655 def NoerlundB(n, x):
%o A100655     if n == 0: return 1
%o A100655     return expand((-x/n)*add((-1)^k*binomial(n,k)*bernoulli(k)*NoerlundB(n-k,x) for k in (1..n)))
%o A100655 def A100655_row(n): return numerator(NoerlundB(n, x)).list()
%o A100655 [A100655_row(n) for n in (0..8)] # _Peter Luschny_, Jul 01 2019
%Y A100655 Cf. A001898, A027641, A027642, A053657, A100615, A100616, A201637.
%K A100655 sign,tabl
%O A100655 0,6
%A A100655 _N. J. A. Sloane_, Dec 05 2004