cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100701 a(n) = a(n-1) + a(n-2) + a(n-1)*a(n-2) for n>=2; a(0)=2, a(1)=3.

This page as a plain text file.
%I A100701 #24 Apr 16 2020 02:08:01
%S A100701 2,3,11,47,575,27647,15925247,440301256703,7011906707722862591,
%T A100701 3087351335301583621409910816767,
%U A100701 21648219537098310851336266290644502090473753542655
%N A100701 a(n) = a(n-1) + a(n-2) + a(n-1)*a(n-2) for n>=2; a(0)=2, a(1)=3.
%C A100701 In general, if b(n) is defined recursively by b(0) = p, b(1) = q, b(n) = b(n-1) + b(n-2) + b(n-1) * b(n-2) for n >= 2 then b(n) = p^Fibonacci(n-1) * q^Fibonacci(n) - 1. - _Rahul Goswami_, Apr 15 2020
%F A100701 a(n) = a(n-1) + a(n-2) + a(n-1)*a(n-2) with a(0)=2 and a(1)=3.
%F A100701 a(n) = 3^Fibonacci(n-1) * 4^Fibonacci(n) - 1. - _Rahul Goswami_, Apr 15 2020
%e A100701 a(2) = (2 + 3) + 2*3 = 11.
%t A100701 a=2;b=3;lst={a,b};Do[c=a*b+a+b;AppendTo[lst,c];a=b;b=c,{n,2*3!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 05 2009 *)
%o A100701 (PARI) a(n)={3^fibonacci(n-1) * 4^fibonacci(n) - 1} \\ _Andrew Howroyd_, Apr 14 2020
%Y A100701 Cf. A000045 (Fibonacci), A063896.
%K A100701 nonn
%O A100701 0,1
%A A100701 _Parthasarathy Nambi_, Dec 09 2004
%E A100701 More terms from _Vladimir Joseph Stephan Orlovsky_, Sep 05 2009