A100718 Composite numbers C(p) such that p and C(p)-p are primes.
8, 10, 14, 30, 54, 58, 62, 66, 82, 108, 114, 120, 178, 182, 204, 210, 318, 324, 330, 352, 366, 430, 506, 544, 560, 586, 596, 616, 704, 738, 792, 858, 870, 914, 918, 960, 988, 990, 1026, 1030, 1062, 1164, 1170, 1194, 1404, 1442, 1446, 1462, 1464, 1470, 1498
Offset: 1
Keywords
Examples
a(4)=30 because C(19)=30=19+11, 19 and 11 are prime and P(11)=31=nextprime(30).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: m:= 0: for c from 2 while count < 100 do if isprime(c) then next fi; m:= m+1; if isprime(m) and isprime(c-m) then count:= count+1; R:= R,c fi od: R; # Robert Israel, Nov 23 2024
-
Mathematica
Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n]; Composite /@ Select[ Prime[ Range[ 205]], PrimeQ[ Composite[ # ] - # ] &] (* Robert G. Wilson v, Dec 11 2004 *) Reap[For[n = 4; p = 1, n <= 1500, n++, If[! PrimeQ[n], If[PrimeQ[p] && PrimeQ[n-p], Sow[n]]; p++]]] [[2, 1]] (* Jean-François Alcover, Jul 18 2013 *)
Formula
C(n)=n+k where k is such that nextprime(C(n))=k-th prime.
Extensions
Edited and extended by Robert G. Wilson v, Dec 11 2004
Comments