cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100718 Composite numbers C(p) such that p and C(p)-p are primes.

Original entry on oeis.org

8, 10, 14, 30, 54, 58, 62, 66, 82, 108, 114, 120, 178, 182, 204, 210, 318, 324, 330, 352, 366, 430, 506, 544, 560, 586, 596, 616, 704, 738, 792, 858, 870, 914, 918, 960, 988, 990, 1026, 1030, 1062, 1164, 1170, 1194, 1404, 1442, 1446, 1462, 1464, 1470, 1498
Offset: 1

Views

Author

Robin Garcia, Dec 11 2004

Keywords

Comments

Nextprime(C(n)) = P(C(n) - n) = (C(n) - n)-th prime.
A proof that the sequence is infinite would be nice.

Examples

			a(4)=30 because C(19)=30=19+11, 19 and 11 are prime and P(11)=31=nextprime(30).
		

Programs

  • Maple
    R:= NULL: count:= 0: m:= 0:
    for c from 2 while count < 100 do
      if isprime(c) then next fi;
      m:= m+1;
      if isprime(m) and isprime(c-m) then
        count:= count+1; R:= R,c
      fi
    od:
    R; # Robert Israel, Nov 23 2024
  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n]; Composite /@ Select[ Prime[ Range[ 205]], PrimeQ[ Composite[ # ] - # ] &] (* Robert G. Wilson v, Dec 11 2004 *)
    Reap[For[n = 4; p = 1, n <= 1500, n++, If[! PrimeQ[n], If[PrimeQ[p] && PrimeQ[n-p], Sow[n]]; p++]]] [[2, 1]]  (* Jean-François Alcover, Jul 18 2013 *)

Formula

C(n)=n+k where k is such that nextprime(C(n))=k-th prime.

Extensions

Edited and extended by Robert G. Wilson v, Dec 11 2004