A100723 Prime numbers whose binary representations are split into exactly seven runs.
149, 173, 181, 277, 293, 331, 337, 347, 349, 373, 421, 557, 587, 593, 599, 601, 613, 617, 619, 653, 659, 673, 691, 701, 709, 727, 733, 757, 809, 811, 821, 857, 859, 877, 937, 941, 1061, 1069, 1093, 1097, 1117, 1129, 1163, 1171, 1181, 1187, 1201, 1213
Offset: 1
Examples
a(3) = 181 is a member because it is the 3rd prime whose binary representation splits into exactly 7 runs: 181_10 = 10110101_2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Run-Length Encoding.
Programs
-
Maple
qprime:= proc(n) if isprime(n) then n fi end proc: [seq(seq(seq(seq(seq(seq(seq(qprime(2^i1 - 2^i2 + 2^i3 - 2^i4 + 2^i5 - 2^i6 + 2^i7-1), i7 = 1..i6-1),i6=i5-1..2,-1),i5=3..i4-1), i4=i3-1..4,-1),i3=5..i2-1),i2=i1-1..6,-1),i1=7..12)]; # Robert Israel, Nov 24 2020
-
Mathematica
Select[Table[Prime[k], {k, 1, 50000}], Length[Split[IntegerDigits[ #, 2]]] == 7 &]
Comments