cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100736 Inverse modulo 2 binomial transform of 3^n.

This page as a plain text file.
%I A100736 #11 Feb 01 2019 03:06:28
%S A100736 1,2,8,16,80,160,640,1280,6560,13120,52480,104960,524800,1049600,
%T A100736 4198400,8396800,43046720,86093440,344373760,688747520,3443737600,
%U A100736 6887475200,27549900800,55099801600,282386483200,564772966400
%N A100736 Inverse modulo 2 binomial transform of 3^n.
%C A100736 3^n may be retrieved as Sum_{k=0..n} (binomial(n,k) mod 2)*A100736(k).
%F A100736 a(n) = Sum_{k=0..n} (-1)^A010060(n-k)*(binomial(n, k) mod 2)*3^k.
%o A100736 (PARI) a(n)=abs(sum(k=0, n, (-1)^(hammingweight(k)%2)* lift(Mod(binomial(n, k), 2))*3^k)) \\ _Jianing Song_, Jan 27 2019
%Y A100736 Cf. A010060, A100735.
%K A100736 easy,nonn
%O A100736 0,2
%A A100736 _Paul Barry_, Dec 06 2004