This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100824 #22 Jan 25 2022 10:25:57 %S A100824 1,1,1,2,2,4,3,7,5,12,7,19,11,30,15,45,22,67,30,97,42,139,56,195,77, %T A100824 272,101,373,135,508,176,684,231,915,297,1212,385,1597,490,2087,627, %U A100824 2714,792,3506,1002,4508,1255,5763,1575,7338,1958,9296,2436,11732,3010,14742 %N A100824 Number of partitions of n with at most one odd part. %C A100824 From _Gus Wiseman_, Jan 21 2022: (Start) %C A100824 Also the number of integer partitions of n with alternating sum <= 1, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These are the conjugates of partitions with at most one odd part. For example, the a(1) = 1 through a(9) = 12 partitions with alternating sum <= 1 are: %C A100824 1 11 21 22 32 33 43 44 54 %C A100824 111 1111 221 2211 331 2222 441 %C A100824 2111 111111 2221 3311 3222 %C A100824 11111 3211 221111 3321 %C A100824 22111 11111111 4311 %C A100824 211111 22221 %C A100824 1111111 33111 %C A100824 222111 %C A100824 321111 %C A100824 2211111 %C A100824 21111111 %C A100824 111111111 %C A100824 (End) %H A100824 Alois P. Heinz, <a href="/A100824/b100824.txt">Table of n, a(n) for n = 0..1000</a> %F A100824 G.f.: (1+x/(1-x^2))/Product(1-x^(2*i), i=1..infinity). More generally, g.f. for number of partitions of n with at most k odd parts is (1+Sum(x^i/Product(1-x^(2*j), j=1..i), i=1..k))/Product(1-x^(2*i), i=1..infinity). %F A100824 a(n) ~ exp(sqrt(n/3)*Pi) / (2*sqrt(3)*n) if n is even and a(n) ~ exp(sqrt(n/3)*Pi) / (2*Pi*sqrt(n)) if n is odd. - _Vaclav Kotesovec_, Mar 07 2016 %F A100824 a(2*n) = A000041(n). a(2*n + 1) = A000070(n). - _David A. Corneth_, Jan 23 2022 %e A100824 From _Gus Wiseman_, Jan 21 2022: (Start) %e A100824 The a(1) = 1 through a(9) = 12 partitions with at most one odd part: %e A100824 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A100824 (21) (22) (32) (42) (43) (44) (54) %e A100824 (41) (222) (52) (62) (63) %e A100824 (221) (61) (422) (72) %e A100824 (322) (2222) (81) %e A100824 (421) (432) %e A100824 (2221) (441) %e A100824 (522) %e A100824 (621) %e A100824 (3222) %e A100824 (4221) %e A100824 (22221) %e A100824 (End) %p A100824 seq(coeff(convert(series((1+x/(1-x^2))/mul(1-x^(2*i),i=1..100),x,100),polynom),x,n),n=0..60); (C. Ronaldo) %t A100824 nmax = 50; CoefficientList[Series[(1+x/(1-x^2)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 07 2016 *) %t A100824 Table[Length[Select[IntegerPartitions[n],Count[#,_?OddQ]<=1&]],{n,0,30}] (* _Gus Wiseman_, Jan 21 2022 *) %o A100824 (PARI) a(n) = if(n%2==0, numbpart(n/2), sum(i=1, (n+1)\2, numbpart((n-2*i+1)\2))) \\ _David A. Corneth_, Jan 23 2022 %Y A100824 Cf. A008951, A000070, A000097, A000098, A000710. %Y A100824 The case of alternating sum 0 (equality) is A000070. %Y A100824 A multiplicative version is A339846. %Y A100824 These partitions are ranked by A349150, conjugate A349151. %Y A100824 A000041 = integer partitions, strict A000009. %Y A100824 A027187 = partitions of even length, strict A067661, ranked by A028260. %Y A100824 A027193 = partitions of odd length, ranked by A026424. %Y A100824 A058695 = partitions of odd numbers. %Y A100824 A103919 = partitions by sum and alternating sum (reverse: A344612). %Y A100824 A277103 = partitions with the same number of odd parts as their conjugate. %Y A100824 Cf. A000984, A001791, A008549, A097805, A119620, A182616, A236559, A236913, A236914, A304620, A344607, A345958, A347443. %K A100824 easy,nonn %O A100824 0,4 %A A100824 _Vladeta Jovovic_, Jan 13 2005 %E A100824 More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005