A100833 Smallest positive palindrome-free and squarefree sequence.
1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 5, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 5, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 7, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 5, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 5, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 8, 1, 2, 3, 1, 2, 4, 1, 2, 3
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A007814.
Programs
-
Maple
B[1]:= 1: B[2]:= 2: for n from 3 to 200 do for c from 1 do if B[n-1]=c or B[n-2]=c then next fi; Cs:= ListTools:-Reverse(select(t -> B[t]=c, [$ceil(n/2)..n-3])); good:= true; for k in Cs do if andmap(t -> (B[k-t]=B[n-t]),[$1..n-k-1]) then good:= false; break fi od; if good then B[n]:= c; break fi; od; od: seq(B[i],i=1..200); # Robert Israel, Jan 17 2019
Formula
Conjectures from Robert Israel, Jan 17 2019: (Start)
a(n) = 1 if n == 1 (mod 3).
a(n) = 2 if n == 2 (mod 3).
Otherwise a(n) = 3 + A007814(n/3). (End)
Comments