cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100868 a(n) = Sum_{k>0} k^(2n-1)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622.

This page as a plain text file.
%I A100868 #17 May 12 2018 16:54:13
%S A100868 1,7,151,6847,532231,63206287,10645162711,2413453999327,
%T A100868 708721089607591,261679010699505967,118654880542567722871,
%U A100868 64819182599591545006207,41987713702382161714004551,31821948327041297758906340047,27896532358791207565357448388631
%N A100868 a(n) = Sum_{k>0} k^(2n-1)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622.
%C A100868 A bisection of "Stirling-Bernoulli transform" of Fibonacci numbers.
%H A100868 Alois P. Heinz, <a href="/A100868/b100868.txt">Table of n, a(n) for n = 1..224</a>
%F A100868 a(n) = A050946(2*n-1).
%t A100868 FullSimplify[Table[PolyLog[1 - 2k, GoldenRatio^(-2)], {k, 1, 10}]] (* _Vladimir Reshetnikov_, Feb 16 2011 *)
%o A100868 (PARI) a(n)=round(sum(k=1,500,k^(2*n-1)/((1+sqrt(5))/2)^(2*k)))
%Y A100868 Cf. A001622, A050946, A100872.
%Y A100868 Row sums of A303675.
%K A100868 nonn
%O A100868 1,2
%A A100868 _Benoit Cloitre_, Jan 08 2005