This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100883 #20 Jan 22 2019 07:45:22 %S A100883 1,1,2,3,5,6,11,13,19,26,36,43,64,77,102,129,169,205,268,323,413,504, %T A100883 629,751,947,1131,1384,1661,2024,2393,2919,3442,4136,4884,5834,6836, %U A100883 8162,9531,11262,13155,15493,17981,21138,24472,28571,33066,38475,44305 %N A100883 Number of partitions of n in which the sequence of frequencies of the summands is nondecreasing. %C A100883 From _Gus Wiseman_, Jan 21 2019: (Start) %C A100883 Also the number of semistandard Young tableaux where the rows are constant and the entries sum to n. For example, the a(8) = 19 tableaux are: %C A100883 8 44 2222 11111111 %C A100883 . %C A100883 1 2 11 3 111 22 1111 11 11111 1111 111111 %C A100883 7 6 6 5 5 4 4 33 3 22 2 %C A100883 . %C A100883 1 1 11 111 %C A100883 2 3 2 2 %C A100883 5 4 4 3 %C A100883 (End) %H A100883 Alois P. Heinz, <a href="/A100883/b100883.txt">Table of n, a(n) for n = 0..1000</a> %e A100883 a(5) = 6 because, of the 7 unrestricted partitions of 5, only one, 2 + 2 + 1, has a decreasing sequence of frequencies. Two is used twice, but 1 is used only once. %p A100883 b:= proc(n, i, t) option remember; `if`(n<0, 0, `if`(n=0, 1, %p A100883 `if`(i=1, `if`(n>=t, 1, 0), `if`(i=0, 0, b(n, i-1, t)+ %p A100883 add(b(n-i*j, i-1, j), j=t..floor(n/i)))))) %p A100883 end: %p A100883 a:= n-> b(n$2, 1): %p A100883 seq(a(n), n=0..60); # _Alois P. Heinz_, Jul 03 2014 %t A100883 b[n_, i_, t_] := b[n, i, t] = If[n<0, 0, If[n == 0, 1, If[i == 1, If[n >= t, 1, 0], If[i == 0, 0, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t, Floor[n/i]}]]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Mar 16 2015, after _Alois P. Heinz_ *) %t A100883 Table[Length[Select[IntegerPartitions[n],OrderedQ[Length/@Split[#]]&]],{n,20}] (* _Gus Wiseman_, Jan 21 2019 *) %Y A100883 Cf. A100881, A100882, A100884. %Y A100883 Cf. A000085, A000219, A003293, A006951, A100471, A323582. %K A100883 nonn %O A100883 0,3 %A A100883 _David S. Newman_, Nov 21 2004 %E A100883 More terms from _Vladeta Jovovic_, Nov 23 2004