A100927 Number of partitions of n into distinct parts free of hexagonal numbers.
1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 5, 7, 7, 10, 10, 13, 15, 17, 21, 23, 29, 32, 38, 44, 50, 59, 66, 76, 87, 100, 113, 129, 147, 167, 189, 214, 241, 273, 307, 345, 388, 436, 489, 548, 612, 686, 765, 854, 951, 1059, 1180, 1309, 1456, 1614, 1791, 1985, 2196
Offset: 1
Keywords
Examples
E.g"a(16)=13 because 16=14+2=13+3=12+4=11+5=11+3+2=10+4+2=9+7=9+5+2=9+4+3=8+5+3=7+5+4=7+4+3+2"
Links
- Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
- James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
Programs
-
Maple
series(product((1+x^k)/(1+x^(2*k^(2)-k)),k=1..100),x=0,100);
Formula
G.f.:=product_{k>0}(1+x^k)/(1+x^(2k^2-k))= 1/product_{k>0}(1-x^k+x^(2k)-x^(3k)+...-x^(2k^2-3k)+x^(2k^2-2k))
Comments