cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100934 Numbers having more than one representation as the product of consecutive integers.

This page as a plain text file.
%I A100934 #19 Jun 28 2021 02:48:43
%S A100934 6,24,120,210,720,5040,40320,175560,362880,3628800,17297280,19958400,
%T A100934 39916800,259459200,479001600,6227020800,87178291200,1307674368000,
%U A100934 20922789888000,355687428096000,6402373705728000,20274183401472000,121645100408832000
%N A100934 Numbers having more than one representation as the product of consecutive integers.
%C A100934 All the factorials occur because we allow products to start with 1. See A064224 for a more restrictive case.
%H A100934 Michael S. Branicky, <a href="/A100934/b100934.txt">Table of n, a(n) for n = 1..26</a>
%H A100934 H. L. Abbott, P. Erdos and D. Hanson, <a href="http://www.jstor.org/stable/2319526">On the numbers of times an integer occurs as a binomial coefficient</a>, Amer. Math. Monthly, (March 1974), 256-261.
%e A100934 120 is a term since 120 = 1*2*3*4*5 = 2*3*4*5 = 4*5*6.
%e A100934 210 is a term since 210 = 14*15 = 5*6*7.
%e A100934 Other non-factorial terms are:
%e A100934   175560    = Product_{i=55..57} i = Product_{i=19..22} i,
%e A100934   17297280  = Product_{i=63..66} i = Product_{i= 8..14} i,
%e A100934   19958400  = Product_{i= 5..12} i = Product_{i= 3..11} i,
%e A100934   259459200 = Product_{i= 8..15} i = Product_{i= 5..13} i,
%e A100934   20274183401472000 = Product_{i=6..20} i = Product_{i=4..19} i.
%t A100934 nn=10^10; t3={}; Do[m=0; p=n; While[m++; p=p(n+m); p<=nn, t3={t3, p}], {n, Sqrt[nn]}]; t3=Sort[Flatten[t3]]; lst={}; Do[If[t3[[i]]==t3[[i+1]], AppendTo[lst, t3[[i]]]], {i, Length[t3]-1}]; Union[lst]
%o A100934 (Python)
%o A100934 import heapq
%o A100934 def aupton(terms, verbose=False):
%o A100934     p = 1*2; h = [(p, 1, 2)]; nextcount = 3; alst = []; oldv = None
%o A100934     while len(alst) < terms:
%o A100934         (v, s, l) = heapq.heappop(h)
%o A100934         if v == oldv and v not in alst:
%o A100934             alst.append(v)
%o A100934             if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i = Prod_{{i = {olds}..{oldl}}} i]")
%o A100934         if v >= p:
%o A100934             p *= nextcount
%o A100934             heapq.heappush(h, (p, 1, nextcount))
%o A100934             nextcount += 1
%o A100934         oldv, olds, oldl = v, s, l
%o A100934         v //= s; s += 1; l += 1; v *= l
%o A100934         heapq.heappush(h, (v, s, l))
%o A100934     return alst
%o A100934 print(aupton(20, verbose=True)) # _Michael S. Branicky_, Jun 24 2021
%Y A100934 Cf. A064224, A003015 (numbers occurring 5 or more times in Pascal's triangle).
%K A100934 nonn
%O A100934 1,1
%A A100934 _T. D. Noe_, Nov 22 2004
%E A100934 a(18) and beyond from _Michael S. Branicky_, Jun 24 2021