This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100934 #19 Jun 28 2021 02:48:43 %S A100934 6,24,120,210,720,5040,40320,175560,362880,3628800,17297280,19958400, %T A100934 39916800,259459200,479001600,6227020800,87178291200,1307674368000, %U A100934 20922789888000,355687428096000,6402373705728000,20274183401472000,121645100408832000 %N A100934 Numbers having more than one representation as the product of consecutive integers. %C A100934 All the factorials occur because we allow products to start with 1. See A064224 for a more restrictive case. %H A100934 Michael S. Branicky, <a href="/A100934/b100934.txt">Table of n, a(n) for n = 1..26</a> %H A100934 H. L. Abbott, P. Erdos and D. Hanson, <a href="http://www.jstor.org/stable/2319526">On the numbers of times an integer occurs as a binomial coefficient</a>, Amer. Math. Monthly, (March 1974), 256-261. %e A100934 120 is a term since 120 = 1*2*3*4*5 = 2*3*4*5 = 4*5*6. %e A100934 210 is a term since 210 = 14*15 = 5*6*7. %e A100934 Other non-factorial terms are: %e A100934 175560 = Product_{i=55..57} i = Product_{i=19..22} i, %e A100934 17297280 = Product_{i=63..66} i = Product_{i= 8..14} i, %e A100934 19958400 = Product_{i= 5..12} i = Product_{i= 3..11} i, %e A100934 259459200 = Product_{i= 8..15} i = Product_{i= 5..13} i, %e A100934 20274183401472000 = Product_{i=6..20} i = Product_{i=4..19} i. %t A100934 nn=10^10; t3={}; Do[m=0; p=n; While[m++; p=p(n+m); p<=nn, t3={t3, p}], {n, Sqrt[nn]}]; t3=Sort[Flatten[t3]]; lst={}; Do[If[t3[[i]]==t3[[i+1]], AppendTo[lst, t3[[i]]]], {i, Length[t3]-1}]; Union[lst] %o A100934 (Python) %o A100934 import heapq %o A100934 def aupton(terms, verbose=False): %o A100934 p = 1*2; h = [(p, 1, 2)]; nextcount = 3; alst = []; oldv = None %o A100934 while len(alst) < terms: %o A100934 (v, s, l) = heapq.heappop(h) %o A100934 if v == oldv and v not in alst: %o A100934 alst.append(v) %o A100934 if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i = Prod_{{i = {olds}..{oldl}}} i]") %o A100934 if v >= p: %o A100934 p *= nextcount %o A100934 heapq.heappush(h, (p, 1, nextcount)) %o A100934 nextcount += 1 %o A100934 oldv, olds, oldl = v, s, l %o A100934 v //= s; s += 1; l += 1; v *= l %o A100934 heapq.heappush(h, (v, s, l)) %o A100934 return alst %o A100934 print(aupton(20, verbose=True)) # _Michael S. Branicky_, Jun 24 2021 %Y A100934 Cf. A064224, A003015 (numbers occurring 5 or more times in Pascal's triangle). %K A100934 nonn %O A100934 1,1 %A A100934 _T. D. Noe_, Nov 22 2004 %E A100934 a(18) and beyond from _Michael S. Branicky_, Jun 24 2021