cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100936 Symmetric square array, read by antidiagonals, where the inverse binomial transform of row n equals: [C(n,0)*1, C(n,1)*2,..., C(n,k)*A051163(k), ..., C(n,n)*A051163(n)] and where A051162 equals the antidiagonal sums.

This page as a plain text file.
%I A100936 #8 Jun 13 2017 22:15:44
%S A100936 1,1,1,1,3,1,1,5,5,1,1,7,14,7,1,1,9,28,28,9,1,1,11,47,76,47,11,1,1,13,
%T A100936 71,163,163,71,13,1,1,15,100,301,435,301,100,15,1,1,17,134,502,971,
%U A100936 971,502,134,17,1,1,19,173,778,1909,2577,1909,778,173,19,1,1,21,217,1141
%N A100936 Symmetric square array, read by antidiagonals, where the inverse binomial transform of row n equals: [C(n,0)*1, C(n,1)*2,..., C(n,k)*A051163(k), ..., C(n,n)*A051163(n)] and where A051162 equals the antidiagonal sums.
%C A100936 Antidiagonal sums form A051163. Main diagonal is A100937. Different from A086620.
%F A100936 T(n, k) = Sum_{j=0..n} C(k, j)*C(n, j)*A051162(j), with T(0, 0) = 1 and where Sum_{i=0..n} T(n-i, i) = A051162(n).
%e A100936 Rows begin:
%e A100936 [1,1,1,1,1,1,1,1,1,...],
%e A100936 [1,3,5,7,9,11,13,15,17,...],
%e A100936 [1,5,14,28,47,71,100,134,...],
%e A100936 [1,7,28,76,163,301,502,778,...],
%e A100936 [1,9,47,163,435,971,1909,3417,...],
%e A100936 [1,11,71,301,971,2577,5917,12167,...],
%e A100936 [1,13,100,502,1909,5917,15678,36744,...],
%e A100936 [1,15,134,778,3417,12167,36744,97272,...],...
%e A100936 Antidiagonal sums form A051163: [1,2,5,12,30,76,194,496,1269,3250,8337,...].
%e A100936 The inverse binomial transform of the rows form the respective rows of the triangle B:
%e A100936 [1*1],
%e A100936 [1*1,1*2],
%e A100936 [1*1,2*2,1*5],
%e A100936 [1*1,3*2,3*5,1*12],
%e A100936 [1*1,4*2,6*5,4*12,1*30],...
%e A100936 where B(n,k) = binomial(n,k)*A051163(k).
%o A100936 (PARI) T(n,k)=if(n==0 || k==0,1, sum(j=0,n,binomial(k,j)*binomial(n,j)*sum(i=0,j,T(j-i,i)));)
%Y A100936 Cf. A051163, A100937.
%K A100936 nonn,tabl
%O A100936 0,5
%A A100936 _Paul D. Hanna_, Nov 23 2004