This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100960 #42 Mar 28 2025 10:11:14 %S A100960 1,3,6,1,12,70,100,45,10,60,720,2445,3525,2637,1125,195,360,7560, %T A100960 46830,132951,210861,205905,123795,40950,5712,2520,84000,835800, %U A100960 3915240,10549168,18092368,20545920,15337560,7193760,1922760,223440,20160,997920,14757120,103692960,423918432,1119730032,2014030656,2516883516,2181661020,1285377660,491282820,109907280,10929600 %N A100960 Triangle read by rows: T(n,k) is the number of labeled 2-connected planar graphs with n nodes and k edges, n >= 3, n <= k <= 3(n-2). %H A100960 Gheorghe Coserea, <a href="/A100960/b100960.txt">Rows n=3..126, flattened</a> %H A100960 Edward A. Bender, Zhicheng Gao, and Nicholas C. Wormald, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v9i1r43">The number of labeled 2-connected planar graphs</a>, Electron. J. Combin., 9 (2002), #R43. %H A100960 Manuel Bodirsky, Clemens Gröpl, and Mihyun Kang, <a href="http://dx.doi.org/10.1016/j.tcs.2007.02.045">Generating Labeled Planar Graphs Uniformly At Random</a>, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, Pages 377-386. %H A100960 Jiaqi Liao, Hong Liu, and Guiying Yan, <a href="https://arxiv.org/abs/2503.19239">Isodiametric inequality for vector spaces</a>, arXiv:2503.19239 [math.CO], 2025. See p. 8. %e A100960 The triangle T(n,k), n>=3, k>=3 begins: %e A100960 n\k [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] %e A100960 [3] 1; %e A100960 [4] 0, 3, 6, 1; %e A100960 [5] 0, 0, 12, 70, 100, 45, 10; %e A100960 [6] 0, 0, 0, 60, 720, 2445, 3525, 2637, 1125, 195; %e A100960 [7] ... %o A100960 (PARI) %o A100960 Q(n,k) = { \\ c-nets with n-edges, k-vertices %o A100960 if (k < 2+(n+2)\3 || k > 2*n\3, return(0)); %o A100960 sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2* %o A100960 (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) - %o A100960 4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1)))); %o A100960 }; %o A100960 A100960_ser(N) = { %o A100960 my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)), %o A100960 q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))), %o A100960 d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1), %o A100960 g2=intformal(t^2/2*((1+d)/(1+x)-1))); %o A100960 serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x); %o A100960 }; %o A100960 A100960_seq(N) = { %o A100960 my(v=Vec(A100960_ser(N+2))); vector(#v, n, Vecrev(v[n]/t^(n+2))); %o A100960 }; %o A100960 concat(A100960_seq(7)) \\ _Gheorghe Coserea_, Aug 09 2017 %Y A100960 Cf. A267411, A290326. %Y A100960 Row sums give A096331. Main diagonal is A001710. %K A100960 nonn,tabf %O A100960 3,2 %A A100960 _N. J. A. Sloane_, Jan 12 2005 %E A100960 More terms from _Michel Marcus_, Feb 10 2016