cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100979 Number of totally ramified extensions over Q_2 with degree n in the algebraic closure of Q_2.

Original entry on oeis.org

1, 6, 3, 92, 5, 90, 7, 5880, 9, 630, 11, 23028, 13, 3570, 15, 6021104, 17, 18414, 19, 2580460, 21, 90090, 23, 377290728, 25, 425958, 27, 233963492, 29, 1966050, 31, 1578396286944, 33, 8912862, 35, 19308478428, 37, 39845850, 39, 108
Offset: 1

Views

Author

Volker Schmitt (clamsi(AT)gmx.net), Nov 25 2004

Keywords

Examples

			a(2)=6 There are 6 ramified extensions with minimal polynomials x^2+2, x^2-2, x^2+6, x^2-6, x^2+2x+2, x^2+2x+6, there is another one by x^2+x+1, but this is unramified.
		

References

  • M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Academie des Sciences, Paris 254, 255, 1962

Crossrefs

Programs

  • Maple
    p:=2; eps:=proc()local p,s,i,sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p,n; p:=args[1]; n:=args[2]; return igcd(n,p^n); end: qpart:=proc() local p,n; p:=args[1]; n:=args[2]; return n/igcd(n,p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p,n)); h:=qpart(p,n); for s from 0 to m do summe:=summe+(p^s*(p^(eps(p,s)*n)-p^(eps(p,s-1)*n)); od; a(n):=n*summe;

Formula

a(n)=n*(sum_{s=0}^m p^s*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=2, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)