cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100980 Number of totally ramified extensions over Q_3 with degree n in the algebraic closure of Q_3.

Original entry on oeis.org

1, 2, 21, 4, 5, 150, 7, 8, 5085, 10, 11, 2892, 13, 14, 10905, 16, 17, 984114, 19, 20, 137739, 22, 23, 472344, 25, 26, 900792441, 28, 29, 5314350, 31, 32, 17537487, 34, 35, 13832346276, 37, 38, 186535713, 40, 41, 602654010, 43, 44, 1408273477425
Offset: 1

Views

Author

Volker Schmitt (clamsi(AT)gmx.net), Nov 25 2004

Keywords

Examples

			a(4)=4 There are 4 totally ramified extensions both with Galoisgroup D_8, so 2 of them are isomorphic to Q_3[x]/(x^4+3) and two of them are isomorphic to Q_3[x]/(x^4-3)
		

References

  • M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Academie des Sciences, Paris 254, 255, 1962

Crossrefs

Programs

  • Maple
    p:=3; eps:=proc()local p,s,i,sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p,n; p:=args[1]; n:=args[2]; return igcd(n,p^n); end: qpart:=proc() local p,n; p:=args[1]; n:=args[2]; return n/igcd(n,p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p,n)); h:=qpart(p,n); for s from 0 to m do summe:=summe+(p^s*(p^(eps(p,s)*n)-p^(eps(p,s-1)*n)); od; a(n):=n*summe;

Formula

a(n)=n*(sum_{s=0}^m p^s*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=3, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)