cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100989 Number of partitions of n into parts free of odd hexagonal numbers and the only number with multiplicity in the unrestricted partitions is the number 2 with multiplicity of the form 3k+l, where k is a positive integer and l=0,1.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 6, 6, 9, 11, 13, 16, 20, 20, 23, 29, 35, 41, 49, 59, 68, 82, 96, 112, 131, 154, 178, 207, 242, 277, 321, 371, 425, 489, 562, 641, 733, 839, 953, 1086, 1236, 1399, 1588, 1798, 2032, 2295, 2592, 2917, 3285
Offset: 1

Views

Author

Noureddine Chair, Nov 29 2004

Keywords

Examples

			a(15)=20 because 15 =13+2 =12+3 =11+4 =10+5 =10+3+2 =9+6=9+4+2 =8+7 =8+5+2 =8+4+3 =7+6+2 =7+5+3 =6+5+4 =6+4+3+2 =9+2+2+2 =7+2+2+2+2 =6+3+2+2+2 =5+4+2+2+2 =4+3+2+2+2+2 =3+2+2+2+2+2+2"
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k)/(1-(-1)^k*x^(2*k^2-k)),k=1..100),x=0,100);

Formula

G.f.: product_{k>0}(1+x^k)/(1-(-1)^k*x^(2*k^2-k)).