This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100995 #50 Jan 10 2025 04:30:12 %S A100995 0,1,1,2,1,0,1,3,2,0,1,0,1,0,0,4,1,0,1,0,0,0,1,0,2,0,3,0,1,0,1,5,0,0, %T A100995 0,0,1,0,0,0,1,0,1,0,0,0,1,0,2,0,0,0,1,0,0,0,0,0,1,0,1,0,0,6,0,0,1,0, %U A100995 0,0,1,0,1,0,0,0,0,0,1,0,4,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0 %N A100995 If n is a prime power p^m, m >= 1, then m, otherwise 0. %C A100995 Calculate matrix powers: (A175992^1)/1 - (A175992^2)/2 + (A175992^3)/3 - (A175992^4)/4 + ... Then the nonzero values of a(n) are found as reciprocals in the first column. Compare this to the Taylor series for log(1+x) = (x)/1 - (x^2)/2 + (x^3)/3 - (x^4)/4 + ... Therefore it is natural to write 0, 1/1, 1/1, 1/2, 1/1, 0, 1/1, 1/3, 1/2, 0, 1/1, ... Raising n to a such power gives A014963. - _Mats Granvik_, _Gary W. Adamson_, Apr 04 2011 %C A100995 The Dirichlet series that generates the reciprocals of this sequence is the logarithm of the Riemann zeta function. - _Mats Granvik_, _Gary W. Adamson_, Apr 04 2011 %C A100995 Number of automorphisms of the finite field with n elements, or 0 if the field does not exist. For n=p^k where p is a prime and k is an integer, the automorphism group of the finite field with n elements is a cyclic group of order k generated by the Frobenius endomorphism. - _Yancheng Lu_, Jan 11 2021 %H A100995 Daniel Forgues, <a href="/A100995/b100995.txt">Table of n, a(n) for n = 1..100000</a> %F A100995 A100994(n) = A014963(n)^a(n); %F A100995 a(A000961(n)) = A025474(n). %F A100995 a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * bigomega(d). - _Ilya Gutkovskiy_, Apr 15 2021 %p A100995 f:= proc(n) local F; %p A100995 F:= ifactors(n)[2]; %p A100995 if nops(F) = 1 then F[1][2] %p A100995 else 0 %p A100995 fi %p A100995 end proc: %p A100995 map(f, [$1..100]); # _Robert Israel_, Jun 09 2015 %t A100995 ppm[n_]:=If[PrimePowerQ[n],FactorInteger[n][[1,2]],0]; Array[ppm,110] (* _Harvey P. Dale_, Mar 03 2014 *) %t A100995 a=Table[Limit[Sum[If[Mod[n, k] == 0, MoebiusMu[n/k]/(n/k)^(s - 1)/(1 - 1/n^(s - 1)), 0], {k, 1, n}], s -> 1], {n, 1, 105}]; %t A100995 Numerator[a]*Denominator[a] (* _Mats Granvik_, Jun 09 2015 *) %t A100995 a = FullSimplify[Table[MangoldtLambda[n]/Log[n], {n, 1, 105}]] %t A100995 Numerator[a]*Denominator[a] (* _Mats Granvik_, Jun 09 2015 *) %o A100995 (PARI) {a(n) = my(t); if( n<1, 0, t = factor(n); if( [1,2] == matsize(t), t[1,2], 0))} /* _Michael Somos_, Aug 15 2012 */ %o A100995 (PARI) {a(n) = my(t); if( n<1, 0, if( t = isprimepower(n), t))} /* _Michael Somos_, Aug 15 2012 */ %o A100995 (Haskell) %o A100995 a100995 n = f 0 n where %o A100995 f e 1 = e %o A100995 f e x = if r > 0 then 0 else f (e + 1) x' %o A100995 where (x', r) = divMod x p %o A100995 p = a020639 n %o A100995 -- _Reinhard Zumkeller_, Mar 19 2013 %Y A100995 Cf. A028233, A069513, A010055. %K A100995 nonn %O A100995 1,4 %A A100995 _Reinhard Zumkeller_, Nov 26 2004 %E A100995 Edited by _Daniel Forgues_ and _N. J. A. Sloane_, Aug 18 2009