This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101030 #20 Oct 17 2022 07:07:12 %S A101030 0,0,2,0,2,21,0,2,45,232,0,2,93,784,3005,0,2,189,2536,13825,45936,0,2, %T A101030 381,7984,61325,264816,818503,0,2,765,24712,264625,1488096,5623681, %U A101030 16736896,0,2,1533,75664,1119005,8172576,38025127,132766208,387057609,0 %N A101030 Triangle read by rows: T(n,k) = number of functions from an n-element set into but not onto a k-element set. %H A101030 Mohammad K. Azarian, <a href="https://doi.org/10.12988/imf.2022.912321">Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions</a>, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Theorem 2.2(v). %H A101030 D. P. Walsh, <a href="http://capone.mtsu.edu/dwalsh/NONSURJ.pdf">A note on non-surjective functions from [n] to [k]</a>. %F A101030 T(n,k) = A089072(n,k) - A019538(n,k). %F A101030 T(n,k) = Sum_{j=1..k} (-1)^(j-1)*C(k,j)*(k-j)^n. - _Dennis P. Walsh_, Apr 13 2016 %F A101030 T(n,k) = k^n - k!*Stirling2(n,k). - _Dennis P. Walsh_, Apr 13 2016 %e A101030 T(3,3) = #(functions into) - #(functions onto) = 3^3 - 6 = 21 %e A101030 Triangle T(n,k) begins: %e A101030 0, %e A101030 0, 2; %e A101030 0, 2, 21; %e A101030 0, 2, 45, 232; %e A101030 0, 2, 93, 784, 3005; %e A101030 0, 2, 189, 2536, 13825, 45936; %e A101030 0, 2, 381, 7984, 61325, 264816, 818503; %e A101030 0, 2, 765, 24712, 264625, 1488096, 5623681, 16736896; %e A101030 0, 2, 1533, 75664, 1119005, 8172576, 38025127, 132766208, 387057609; %p A101030 T:=(n, k)->sum((-1)^(j-1)*binomial(k, j)*(k-j)^n, j=1..k); %p A101030 seq(seq(T(n, k), k=1..n), n=1..15); # _Dennis P. Walsh_, Apr 13 2016 %Y A101030 Cf. A199656, A036679 (diagonal). %K A101030 nonn,tabl,easy %O A101030 1,3 %A A101030 _Clark Kimberling_, Nov 26 2004 %E A101030 Offset corrected from 0 to 1 by _Dennis P. Walsh_, Apr 13 2016