This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101037 #15 Jan 16 2025 23:30:49 %S A101037 1,2,2,3,2,3,4,2,2,4,5,3,2,3,5,6,4,2,2,4,6,7,5,3,2,3,5,7,8,6,4,2,2,4, %T A101037 6,8,9,7,5,3,2,3,5,7,9,10,8,6,4,2,2,4,6,8,10,11,9,7,5,3,2,3,5,7,9,11, %U A101037 12,10,8,6,4,2,2,4,6,8,10,12,13,11,9,7,5,3,2,3,5,7,9,11,13,14,12,10,8,6,4,2,2,4,6,8,10,12,14 %N A101037 Triangle read by rows: T(n,1) = T(n,n) = n and for 1<k<n: T(n,k) = floor((T(n-1,k-1)+T(n-1,k))/2). %C A101037 For n>1: sum of n-th row = A007590(n+1). %H A101037 Robert Israel, <a href="/A101037/b101037.txt">Table of n, a(n) for n = 1..10011</a> (rows 1 to 141, flattened) %F A101037 From _Robert Israel_, Jan 30 2018: (Start) %F A101037 T(n,k) = n - 2*k + 2 if k < (n+1)/2. %F A101037 T(n,(n+1)/2) = 2 if n>1 is odd. %F A101037 T(n,k) = 2*k - n if k > (n+1)/2. %F A101037 G.f. as triangle: x*y*(x^6*y^3-2*x^5*y^3-2*x^5*y^2+x^4*y^3+3*x^4*y^2+x^4*y-3*x^2*y+1)/((1-x^2*y)*(1-x)^2*(1-x*y)^2). %F A101037 (End) %e A101037 Triangle begins: %e A101037 1; %e A101037 2, 2; %e A101037 3, 2, 3; %e A101037 4, 2, 2, 4; %e A101037 5, 3, 2, 3, 5; %e A101037 6, 4, 2, 2, 4, 6; %e A101037 7, 5, 3, 2, 3, 5, 7; %e A101037 ... %p A101037 T:= proc(n,k) if k < (n+1)/2 then n-2*k+2 elif k=(n+1)/2 then 2 else 2*k-n fi end proc: %p A101037 T(1,1):= 1: %p A101037 seq(seq(T(n,k),k=1..n),n=1..20); # _Robert Israel_, Jan 30 2018 %t A101037 T[n_, 1] := n; T[n_, n_] := n; T[n_, k_] := T[n, k] = Which[k < (n + 1)/2, n - 2*k + 2, k == (n + 1)/2, 2, True, 2*k - n]; %t A101037 Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 04 2019 *) %K A101037 nonn,tabl %O A101037 1,2 %A A101037 _Reinhard Zumkeller_, Nov 27 2004