This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101045 #21 Sep 28 2021 19:59:13 %S A101045 2,3,5,7,13,19,31,43,53,67,79,101,149,157,163,181,197,227,307,349,379, %T A101045 409,431,619,631,661,691,751,757,811,829,1093,1117,1217,1279,1423, %U A101045 1453,1481,1531,1549,1579,1759,1877,2239,2273,2287,2383,2447,2659,2671,2707 %N A101045 Record size primes in A101044. %C A101045 This sequence (except 2) is also the record size primes in the longer A020483. %C A101045 Conjecture: lim_{n->infinity} a(n)/n^2 = 1. - _Ya-Ping Lu_, Sep 24 2020 %H A101045 J. K. Andersen, <a href="http://groups.yahoo.com/group/primenumbers/message/15641">Prime gaps (not necessarily consecutive)</a>. %H A101045 Taras Goy and Mark Shattuck, <a href="https://digitalcommons.pvamu.edu/aam/vol16/iss1/10/">Determinant Formulas of Some Hessenberg Matrices with Jacobsthal Entries</a>, Applications and Appl. Math.: An Int'l J. (2021) Vol. 16, Issue 1, Art. 10. %H A101045 Mike Oakes, Ed Pegg Jr, and Jens Kruse Andersen, <a href="/A101042/a101042.txt">Prime gaps (not necessarily consecutive)</a>, digest of 5 messages in primenumbers Yahoo group, Nov 26 - Nov 27, 2004. [Cached copy] %o A101045 (Python) %o A101045 from sympy import isprime, nextprime %o A101045 m = p_max = 0 %o A101045 while m >= 0: %o A101045 p = 2 %o A101045 while isprime(p + 2*m) == 0: %o A101045 p = nextprime(p) %o A101045 if p > p_max: %o A101045 print(p) %o A101045 p_max = p %o A101045 m += 1 # _Ya-Ping Lu_, Sep 24 2020 %Y A101045 Cf. A020483, A101042, A101043, A101044, A101046. %K A101045 nonn %O A101045 1,1 %A A101045 _Jens Kruse Andersen_, Nov 28 2004