A101051 Numbers m such that Sum_{p prime|m} p^r(p) = m, where r(p) is the least positive primitive root of p (A001918).
2, 9, 25, 121, 132, 169, 343, 361, 841, 1369, 2809, 3481, 3721, 4489, 4913, 6889, 10201, 11449, 16371, 17161, 19321, 22201, 26569, 29791, 29929, 32041, 32761, 38809, 44521, 51529, 72361, 79507, 85849, 100489, 120409, 121801, 139129, 143641
Offset: 1
Keywords
Examples
16371 = 3^2 * 17 * 107 = 3^2 + 17^3 + 107^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A001918.
Programs
-
Mathematica
f[p_, e_] := p^PrimitiveRoot[p]; q[n_] := Plus @@ f @@@ FactorInteger[n] == n; Select[Range[2, 10^5], q] (* Amiram Eldar, Sep 25 2021 *)
Extensions
Shorter name from Amiram Eldar, Sep 25 2021
Comments