This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101109 #18 Mar 01 2019 03:00:36 %S A101109 1,0,0,6,0,0,360,0,0,60480,0,0,19958400,0,0,10897286400,0,0, %T A101109 8892185702400,0,0,10137091700736000,0,0,15388105201717248000,0,0, %U A101109 30006805143348633600000,0,0,73096577329197271449600000 %N A101109 Number of sets of lists (sequences) of n labeled elements with k=3 elements per list. %C A101109 The (labeled) case for k=2 is A067994, the Hermite numbers. The (labeled) case for k>=1 is A000262, Number of "sets of lists". %H A101109 Alois P. Heinz, <a href="/A101109/b101109.txt">Table of n, a(n) for n = 0..582</a> %F A101109 E.g.f.: exp(z^3). %F A101109 a(0) = 1, a(1) = 0, a(2) = 0, (-n-3)*a(n+3)+3*a(n). %F A101109 a(n) = n!/(n/3)!, if 3 divides n, 0 otherwise. - _Mitch Harris_, Jan 19 2006 %e A101109 Let Z[i] denote the i-th labeled element. Then a(3) = 6 with the following six sets: %e A101109 Set(Sequence(Z[3],Z[1],Z[2])), Set(Sequence(Z[2],Z[1],Z[3])), Set(Sequence(Z[3],Z[2],Z[1])), Set(Sequence(Z[2],Z[3],Z[1])), Set(Sequence(Z[1],Z[3],Z[2])), Set(Sequence(Z[1],Z[2],Z[3])). %p A101109 A101109 := n -> n!*PIECEWISE([1/GAMMA(1/3*n+1), irem(n,3) = 0],[0, irem(n-1,3) = 0],[0, irem(n-2,3) = 0]); [ seq(n!*PIECEWISE([1/GAMMA(1/3*n+1), irem(n,3) = 0],[0, irem(n-1,3) = 0],[0, irem(n-2,3) = 0]),n=0..30) ]; %p A101109 # second Maple program: %p A101109 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)* %p A101109 j!*binomial(n-1, j-1), j=`if`(n>2, 3, [][]))) %p A101109 end: %p A101109 seq(a(n), n=0..40); # _Alois P. Heinz_, May 10 2016 %t A101109 With[{nn=30},CoefficientList[Series[Exp[x^3],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Oct 16 2013 *) %o A101109 (Sage) %o A101109 def A101109(n) : return factorial(n)/factorial(n/3) if n%3 == 0 else 0 %o A101109 [A101109(n) for n in (0..30)] # _Peter Luschny_, Jul 12 2012 %Y A101109 Cf. A000262, A067994. %K A101109 nonn %O A101109 0,4 %A A101109 _Thomas Wieder_, Dec 01 2004