A101114 Let t(G) = number of unitary factors of the Abelian group G. Then a(n) = sum t(G) over all Abelian groups G of order <= n.
1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 41, 43, 47, 51, 61, 63, 71, 73, 81, 85, 89, 91, 103, 107, 111, 117, 125, 127, 135, 137, 151, 155, 159, 163, 179, 181, 185, 189, 201, 203, 211, 213, 221, 229, 233, 235, 255, 259, 267, 271, 279, 281, 293, 297, 309, 313, 317
Offset: 1
Examples
A101113 begins 1, 2, 2, 4, 2. So a(5) = 11.
References
- Schmidt, Peter Georg, Zur Anzahl unitaerer Faktoren abelscher Gruppen. [On the number of unitary factors in Abelian groups] Acta Arith., 64 (1993), 237-248.
- Wu, J., On the average number of unitary factors of finite Abelian groups, Acta Arith. 84 (1998), 17-29.
Crossrefs
Cf. A101113.
Programs
-
Mathematica
Sum[Apply[Times, 2*Map[PartitionsP, Map[Last, FactorInteger[i]]]], {i, n}]
Formula
a(n) = partial sums of A101113
Comments