cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101120 Records in A101119, which forms the nonzero differences of A006519 and A003484.

This page as a plain text file.
%I A101120 #31 Jun 07 2023 08:31:26
%S A101120 7,22,52,112,239,494,1004,2024,4071,8166,16356,32736,65503,131038,
%T A101120 262108,524248,1048535,2097110,4194260,8388560,16777167,33554382,
%U A101120 67108812,134217672,268435399,536870854,1073741764,2147483584,4294967231,8589934526,17179869116,34359738296
%N A101120 Records in A101119, which forms the nonzero differences of A006519 and A003484.
%H A101120 Harvey P. Dale, <a href="/A101120/b101120.txt">Table of n, a(n) for n = 1..1000</a>
%H A101120 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,0,1,-3,2).
%F A101120 a(n) = A101119(2^(n-1)) for n>=1.
%F A101120 a(n) = 2^(n+3) - 2^((n-1)(mod 4)) - 8*floor((n+3)/4).
%F A101120 a(n) = 2^(n+3) - A003485(n+3). - _Johannes W. Meijer_, Oct 31 2012
%F A101120 From _Chai Wah Wu_, Apr 15 2017: (Start)
%F A101120 a(n) = 3*a(n-1) - 2*a(n-2) + a(n-4) - 3*a(n-5) + 2*a(n-6) for n > 6.
%F A101120 G.f.: x*(-x - 7)/((x - 1)^2*(x + 1)*(2*x - 1)*(x^2 + 1)). (End)
%F A101120 E.g.f.: (exp(x)*(32*exp(x) - 8*x - 27) - 4*cos(x) - cosh(x) - 2*sin(x) + sinh(x))/4. - _Stefano Spezia_, Jun 06 2023
%t A101120 LinearRecurrence[{3,-2,0,1,-3,2},{7,22,52,112,239,494},30] (* _Harvey P. Dale_, Jan 23 2023 *)
%o A101120 (PARI) a(n)=2^(n+3)-2^((n-1)%4)-8*((n+3)\4)
%o A101120 (Python)
%o A101120 def A101120(n): return (1<<(n+3))-(1<<((n-1)&3))-(((n+3)&-4)<<1) # _Chai Wah Wu_, Jul 10 2022
%Y A101120 Cf. A003484, A006519, A101119, A101121, A101122.
%K A101120 nonn,easy
%O A101120 1,1
%A A101120 _Simon Plouffe_ and _Paul D. Hanna_, Dec 02 2004