This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101124 #27 Dec 28 2018 10:26:29 %S A101124 1,0,1,-1,1,1,0,1,2,1,1,1,7,3,1,0,1,26,17,4,1,-1,1,97,99,31,5,1,0,1, %T A101124 362,577,244,49,6,1,1,1,1351,3363,1921,485,71,7,1,0,1,5042,19601, %U A101124 15124,4801,846,97,8,1,-1,1,18817,114243,119071,47525,10081,1351,127,9,1,0,1,70226,665857,937444,470449,120126,18817,2024,161 %N A101124 Number triangle associated to Chebyshev polynomials of first kind. %H A101124 Seiichi Manyama, <a href="/A101124/b101124.txt">Antidiagonals n = 0..139, flattened</a> %H A101124 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A101124 Number triangle S(n, k)=T(n-k, k), k<n, S(n, n)=1, 0 otherwise, where T(n, k)=(n/2)sum{j=0..floor(n/2), C(n-j, j)(-1)^j*(2k)^(n-2j)}. %F A101124 Columns have g.f. x^k(1-kx)/(1-2kx+x^2). %F A101124 Also, square array if(n=0, 1, T(n, k)) read by antidiagonals. %e A101124 As a number triangle, rows begin: %e A101124 {1}, %e A101124 {0,1}, %e A101124 {-1,1,1}, %e A101124 {0,1,2,1}, %e A101124 ... %e A101124 As a square array, rows begin %e A101124 1, 1, 1, 1, 1, ... %e A101124 0, 1, 2, 3, 4, ... %e A101124 -1, 1, 7, 17, 31, ... %e A101124 0, 1, 26, 99, 244, ... %e A101124 1, 1, 97, 577, 1921, ... %t A101124 T[n_, k_] := SeriesCoefficient[x^k (1 - k x)/(1 - 2 k x + x^2), {x, 0, n}]; %t A101124 Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 12 2017 *) %Y A101124 Columns include A001075, A001541, A001091, A001079, A023038, A011943. %Y A101124 Row sums are A101125. %Y A101124 Diagonal sums are A101126. %Y A101124 Main diagonal gives A115066. %Y A101124 Mirror of A322836. %Y A101124 Cf. A053120. %K A101124 easy,sign,tabl %O A101124 0,9 %A A101124 _Paul Barry_, Dec 02 2004