A101200 Number of partitions of n with rank 3 (the rank of a partition is the largest part minus the number of parts).
0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 3, 6, 7, 10, 11, 17, 18, 26, 30, 40, 47, 63, 72, 94, 111, 140, 165, 209, 244, 304, 359, 440, 519, 634, 743, 901, 1060, 1273, 1494, 1789, 2092, 2491, 2914, 3449, 4026, 4752, 5530, 6502, 7561, 8852, 10272, 11997, 13889, 16171, 18695, 21700, 25041, 29002
Offset: 1
Keywords
Examples
a(6)=1 because the 11 partitions 6,51,42,411,33,321,3111,222,2211,21111,111111 have ranks 5,3,2,1,1,0,-1,-1,-2,-3,-5, respectively.
References
- George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(combinat): for n from 1 to 45 do P:=partition(n): c:=0: for j from 1 to nops(P) do if P[j][nops(P[j])]-nops(P[j])=3 then c:=c+1 else c:=c fi od: a[n]:=c: od: seq(a[n],n=1..45);
-
Mathematica
Table[Count[IntegerPartitions[n],?(#[[1]]-Length[#]==3&)],{n,60}] (* _Harvey P. Dale, Feb 11 2025 *)
Extensions
More terms, Joerg Arndt, Oct 07 2012
Comments