cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101230 Number of partitions of 2n in which both odd parts and parts that are multiples of 3 occur with even multiplicities. There is no restriction on the other even parts.

This page as a plain text file.
%I A101230 #22 Apr 14 2017 23:54:54
%S A101230 1,2,4,7,12,20,32,50,76,113,166,240,343,484,676,935,1282,1744,2355,
%T A101230 3158,4208,5573,7340,9616,12536,16266,21012,27028,34628,44196,56204,
%U A101230 71226,89964,113270,142180,177948,222089,276430,343172,424959,524966
%N A101230 Number of partitions of 2n in which both odd parts and parts that are multiples of 3 occur with even multiplicities. There is no restriction on the other even parts.
%C A101230 Note that if a partition of n has odd parts occur with even multiplicities then n must be even. This is the reason for only looking at partitions of 2n. - _Michael Somos_, Mar 04 2012
%H A101230 G. C. Greubel, <a href="/A101230/b101230.txt">Table of n, a(n) for n = 0..1000</a>
%H A101230 Noureddine Chair, <a href="http://arxiv.org/abs/hep-th/0409011">Partition Identities From Partial Supersymmetry</a>, arXiv:hep-th/0409011v1, 2004.
%F A101230 G.f.: product_{k>0}(1+x^k)/((1-x^k)(1+x^(3k)))= Theta_4(0, x^3)/theta(0, x)1/product_{k>0}(1-x^(3k)).
%F A101230 Euler transform of period 6 sequence [2, 1, 1, 1, 2, 1, ...]. - _Vladeta Jovovic_, Dec 17 2004
%F A101230 Expansion of q^(1/8) * eta(q^2) * eta(q^3) / (eta(q)^2 * eta(q^6)) in powers of q. - _Michael Somos_, Mar 04 2012
%F A101230 Convolution inverse of A089812. - _Michael Somos_, Mar 04 2012
%F A101230 Convolution product of A000041 and A003105. - _Michael Somos_, Mar 04 2012
%F A101230 a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (6*n). - _Vaclav Kotesovec_, Sep 01 2015
%e A101230 a(8)=12 because 8 = 4+4 = 4+2+2 = 4+2+1+1 = 4+1+1+1+1 = 3+3+2 = 3+3+1+1 = 2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
%e A101230 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 50*x^7 + 76*x^8 + 113*x^9 + ...
%e A101230 1/q + 2*q^7 + 4*q^15 + 7*q^23 + 12*q^31 + 20*q^39 + 32*q^47 + 50*q^55 + 76*q^63 + ...
%p A101230 series(product((1+x^k)/((1-x^k)*(1+x^(3*k))),k=1..100),x=0,100);
%t A101230 nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1))*(1+x^(3*k-2)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 01 2015 *)
%o A101230 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A)^2 * eta(x^6 + A)), n))} /* _Michael Somos_, Mar 04 2012 */
%Y A101230 Cf. A000041, A003105, A015128, A089812, A098151.
%K A101230 nonn
%O A101230 0,2
%A A101230 _Noureddine Chair_, Dec 16 2004