cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101248 Decimal Goedelization of contingent WFFs (well-formed formulas) from propositional calculus, in Richard C. Schroeppel's metatheory of A101273. Truth value depends on truth value of variables, but is neither always true (theorem) nor always false (antitheorem).

This page as a plain text file.
%I A101248 #25 Feb 16 2025 08:32:55
%S A101248 1,2,11,12,21,22,31,32,111,112,121,122,141,142,152,161,162,172,182,
%T A101248 211,212,221,222,241,242,251,261,262,271,281,311,312,321,322,331,332,
%U A101248 910,920,1111,1112,1121,1122,1141,1142,1151,1152,1161,1162,1171,1172,1181,1182
%N A101248 Decimal Goedelization of contingent WFFs (well-formed formulas) from propositional calculus, in Richard C. Schroeppel's metatheory of A101273. Truth value depends on truth value of variables, but is neither always true (theorem) nor always false (antitheorem).
%C A101248 Blocks of 1's and 2s are variables: A = 1, B = 2, C = 11, D = 12, E = 21, ... Not (also written -) = 3; And = 4; Xor = 5; Or = 6; Implies = 7; Equiv = 8; Left Parenthesis = 9; Right Parenthesis = 0. Operator binding strength is in numerical order, Not > And > ... > Equiv. The non-associative "Implies" is evaluated from Left to Right; A->B->C = is interpreted (A->B)->C.
%C A101248 Redundant parentheses are permitted, so long as they are balanced and centered on a valid variable or sentential formula and not on the null character. Besides A101273 (theorems = tautologies), A100200 (antitheorems = always false WFFs) there can also be the subsequence of theorems that can be proved within the more restricted intuitionistic logic; this sequence of well-formed formulas whose truth value is contingent on the truth values of their variables; and many others.
%C A101248 As with A101273, I conjecture that a power law approximates the number of integers in this sequence, where the number with N digits is approximately N to the power of some real number D. The union of A101273, A100200 and this sequence is the set of all WFFs in Richard C. Schroeppel's metatheory of A101273.
%D A101248 Goedel, K. On Formally Undecidable Propositions of Principia Mathematica and Related Systems. New York: Dover, 1992.
%D A101248 Hofstadter, D. R. Goedel, Escher, Bach: An Eternal Golden Braid. New York: Vintage Books, p. 17, 1989.
%D A101248 Kleene, S. C. Introduction to Metamathematics. Princeton, NJ: Van Nostrand, p. 39, 1964.
%H A101248 Charles R Greathouse IV, <a href="/A101248/b101248.txt">Table of n, a(n) for n=1..10000</a>
%H A101248 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PropositionalCalculus.html">Propositional Calculus</a>.
%H A101248 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Connective.html">Connective</a>.
%H A101248 Eric Weisstein et al. <a href="https://mathworld.wolfram.com/GoedelNumber.html">Gödel Number</a>.
%e A101248 1 A
%e A101248 2 B
%e A101248 11 C
%e A101248 12 D
%e A101248 21 E
%e A101248 22 F
%e A101248 31 -A
%e A101248 32 -B
%e A101248 111 G
%e A101248 112 H
%e A101248 121 I
%e A101248 122 J
%e A101248 141 A^A
%e A101248 142 A^B
%e A101248 152 A xor B
%e A101248 161 A V A
%e A101248 162 A V B
%e A101248 172 A->B
%e A101248 182 A=B
%e A101248 211 K
%e A101248 212 L
%e A101248 221 M
%e A101248 222 N
%e A101248 241 B^A
%e A101248 242 B^B
%e A101248 251 B xor A
%e A101248 261 B V A
%e A101248 262 B V B
%e A101248 271 B->A
%e A101248 281 B=A
%e A101248 311 -C
%e A101248 312 -D
%e A101248 321 -E
%e A101248 322 -F
%e A101248 331 --A
%e A101248 332 --B
%e A101248 910 (A)
%e A101248 912 (B)
%e A101248 1111 O
%e A101248 1112 P
%e A101248 1121 Q
%e A101248 1122 R
%e A101248 1141 C^A
%e A101248 1142 C^B
%e A101248 1151 C xor A
%e A101248 1152 C xor B
%e A101248 1161 C V A
%e A101248 1162 C V B
%e A101248 1171 C->A
%e A101248 1172 C->B
%e A101248 1181 C=A
%e A101248 1182 C=B
%Y A101248 Cf. A101273, A100200.
%K A101248 nonn,base
%O A101248 1,2
%A A101248 _Jonathan Vos Post_, Jan 23 2005
%E A101248 Corrected sequence and examples _Charles R Greathouse IV_, Oct 06 2009