This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101248 #25 Feb 16 2025 08:32:55 %S A101248 1,2,11,12,21,22,31,32,111,112,121,122,141,142,152,161,162,172,182, %T A101248 211,212,221,222,241,242,251,261,262,271,281,311,312,321,322,331,332, %U A101248 910,920,1111,1112,1121,1122,1141,1142,1151,1152,1161,1162,1171,1172,1181,1182 %N A101248 Decimal Goedelization of contingent WFFs (well-formed formulas) from propositional calculus, in Richard C. Schroeppel's metatheory of A101273. Truth value depends on truth value of variables, but is neither always true (theorem) nor always false (antitheorem). %C A101248 Blocks of 1's and 2s are variables: A = 1, B = 2, C = 11, D = 12, E = 21, ... Not (also written -) = 3; And = 4; Xor = 5; Or = 6; Implies = 7; Equiv = 8; Left Parenthesis = 9; Right Parenthesis = 0. Operator binding strength is in numerical order, Not > And > ... > Equiv. The non-associative "Implies" is evaluated from Left to Right; A->B->C = is interpreted (A->B)->C. %C A101248 Redundant parentheses are permitted, so long as they are balanced and centered on a valid variable or sentential formula and not on the null character. Besides A101273 (theorems = tautologies), A100200 (antitheorems = always false WFFs) there can also be the subsequence of theorems that can be proved within the more restricted intuitionistic logic; this sequence of well-formed formulas whose truth value is contingent on the truth values of their variables; and many others. %C A101248 As with A101273, I conjecture that a power law approximates the number of integers in this sequence, where the number with N digits is approximately N to the power of some real number D. The union of A101273, A100200 and this sequence is the set of all WFFs in Richard C. Schroeppel's metatheory of A101273. %D A101248 Goedel, K. On Formally Undecidable Propositions of Principia Mathematica and Related Systems. New York: Dover, 1992. %D A101248 Hofstadter, D. R. Goedel, Escher, Bach: An Eternal Golden Braid. New York: Vintage Books, p. 17, 1989. %D A101248 Kleene, S. C. Introduction to Metamathematics. Princeton, NJ: Van Nostrand, p. 39, 1964. %H A101248 Charles R Greathouse IV, <a href="/A101248/b101248.txt">Table of n, a(n) for n=1..10000</a> %H A101248 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PropositionalCalculus.html">Propositional Calculus</a>. %H A101248 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Connective.html">Connective</a>. %H A101248 Eric Weisstein et al. <a href="https://mathworld.wolfram.com/GoedelNumber.html">Gödel Number</a>. %e A101248 1 A %e A101248 2 B %e A101248 11 C %e A101248 12 D %e A101248 21 E %e A101248 22 F %e A101248 31 -A %e A101248 32 -B %e A101248 111 G %e A101248 112 H %e A101248 121 I %e A101248 122 J %e A101248 141 A^A %e A101248 142 A^B %e A101248 152 A xor B %e A101248 161 A V A %e A101248 162 A V B %e A101248 172 A->B %e A101248 182 A=B %e A101248 211 K %e A101248 212 L %e A101248 221 M %e A101248 222 N %e A101248 241 B^A %e A101248 242 B^B %e A101248 251 B xor A %e A101248 261 B V A %e A101248 262 B V B %e A101248 271 B->A %e A101248 281 B=A %e A101248 311 -C %e A101248 312 -D %e A101248 321 -E %e A101248 322 -F %e A101248 331 --A %e A101248 332 --B %e A101248 910 (A) %e A101248 912 (B) %e A101248 1111 O %e A101248 1112 P %e A101248 1121 Q %e A101248 1122 R %e A101248 1141 C^A %e A101248 1142 C^B %e A101248 1151 C xor A %e A101248 1152 C xor B %e A101248 1161 C V A %e A101248 1162 C V B %e A101248 1171 C->A %e A101248 1172 C->B %e A101248 1181 C=A %e A101248 1182 C=B %Y A101248 Cf. A101273, A100200. %K A101248 nonn,base %O A101248 1,2 %A A101248 _Jonathan Vos Post_, Jan 23 2005 %E A101248 Corrected sequence and examples _Charles R Greathouse IV_, Oct 06 2009