cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101263 Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1.

This page as a plain text file.
%I A101263 #53 Feb 25 2025 02:16:02
%S A101263 5,1,7,6,3,8,0,9,0,2,0,5,0,4,1,5,2,4,6,9,7,7,9,7,6,7,5,2,4,8,0,9,6,6,
%T A101263 5,6,6,9,8,1,3,7,8,0,2,6,3,9,8,6,1,0,2,7,6,2,8,0,0,6,4,1,4,6,3,0,1,1,
%U A101263 3,9,4,9,4,9,7,6,0,3,9,9,3,8,4,4,7,3,5,9,4,9,3,8,8,4,9,9,3,3
%N A101263 Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1.
%C A101263 sqrt(2 - sqrt(3)) is the shape of the lesser sqrt(6)-contraction rectangle, as defined at A188739. - _Clark Kimberling_, Apr 16 2011
%C A101263 This is a constructible number, since 12-gon is a constructible polygon. See A003401 for more details. - _Stanislav Sykora_, May 02 2016
%C A101263 It is also smaller positive coordinate of (symmetrical) intersection points of x^2 + y^2 = 4 circle and y = 1/x hyperbola. The bigger coordinate is A188887. - _Leszek Lezniak_, Sep 18 2018
%C A101263 The greatest possible minimum distance between 8 points in a unit square (Schaer and Meir, 1965; Schaer, 1965; Croft et al., 1991). - _Amiram Eldar_, Feb 24 2025
%D A101263 Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
%D A101263 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.
%H A101263 G. C. Greubel, <a href="/A101263/b101263.txt">Table of n, a(n) for n = 0..5000</a>
%H A101263 J. Schaer and A. Meir, <a href="https://doi.org/10.4153/CMB-1965-004-x">On a geometric extremum problem</a>, Canadian Mathematical Bulletin, Vol. 8, No. 1 (1965), pp. 21-27.
%H A101263 J. Schaer, <a href="https://doi.org/10.4153/CMB-1965-018-9">The densest packing of 9 circles in a square</a>, Canadian Mathematical Bulletin, Vol. 8, No. 3 (1965), pp. 273-277.
%H A101263 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Dodecagon.html">Dodecagon</a>.
%H A101263 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A101263 Equals sqrt(A019913). - _R. J. Mathar_, Apr 20 2009
%F A101263 Equals 2*sin(Pi/12) = 2*cos(Pi*5/12). - _Stanislav Sykora_, May 02 2016
%F A101263 Equals i^(5/6) + i^(-5/6). - _Gary W. Adamson_, Jul 07 2022
%F A101263 From _Amiram Eldar_, Nov 24 2024: (Start)
%F A101263 Equals A120683 / 2 = 2 * A019824 = 1 / A188887 = exp(-A329247).
%F A101263 Equals (sqrt(3)-1)/sqrt(2).
%F A101263 Equals Product_{k>=1} (1 + (-1)^k/A091999(k)). (End)
%e A101263 0.517638090205041524697797675248096656698137802639861027628006414630113....
%t A101263 r = 6^(1/2); t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]
%t A101263 N[t, 130]
%t A101263 RealDigits[N[t, 130]][[1]]  (*A101263*)
%t A101263 RealDigits[Sqrt[2-Sqrt[3]],10,120][[1]] (* _Harvey P. Dale_, Apr 24 2018 *)
%o A101263 (PARI) 2*sin(Pi/12) \\ _Stanislav Sykora_, May 02 2016
%Y A101263 Cf. A003401, A019824, A019913, A091999, A120683, A188739, A188887, A329247.
%K A101263 cons,nonn
%O A101263 0,1
%A A101263 Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 25 2005