This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101271 #24 Jan 24 2021 06:43:42 %S A101271 1,1,2,3,4,5,6,8,9,12,12,16,15,21,20,26,25,33,28,40,36,45,42,56,44,65, %T A101271 56,70,64,84,66,96,81,100,88,120,90,133,110,132,121,161,120,175,140, %U A101271 176,156,208,153,220,180,222,196,261,184,280,225,270,240,312,230,341,272 %N A101271 Number of partitions of n into 3 distinct and relatively prime parts. %C A101271 The Heinz numbers of these partitions are the intersection of A289509 (relatively prime), A005117 (strict), and A014612 (triple). - _Gus Wiseman_, Oct 15 2020 %H A101271 Fausto A. C. Cariboni, <a href="/A101271/b101271.txt">Table of n, a(n) for n = 6..10000</a> %F A101271 G.f. for the number of partitions of n into m distinct and relatively prime parts is Sum(moebius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k), i=1..m), k=1..infinity). %e A101271 For n=10 we have 4 such partitions: 1+2+7, 1+3+6, 1+4+5 and 2+3+5. %e A101271 From _Gus Wiseman_, Oct 13 2020: (Start) %e A101271 The a(6) = 1 through a(18) = 15 triples (A..F = 10..15): %e A101271 321 421 431 432 532 542 543 643 653 654 754 764 765 %e A101271 521 531 541 632 651 652 743 753 763 854 873 %e A101271 621 631 641 732 742 752 762 853 863 954 %e A101271 721 731 741 751 761 843 871 872 972 %e A101271 821 831 832 851 852 943 953 981 %e A101271 921 841 932 861 952 962 A53 %e A101271 931 941 942 961 971 A71 %e A101271 A21 A31 951 A51 A43 B43 %e A101271 B21 A32 B32 A52 B52 %e A101271 A41 B41 A61 B61 %e A101271 B31 C31 B42 C51 %e A101271 C21 D21 B51 D32 %e A101271 C32 D41 %e A101271 C41 E31 %e A101271 D31 F21 %e A101271 E21 %e A101271 (End) %p A101271 m:=3: with(numtheory): g:=sum(mobius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k),i=1..m),k=1..20): gser:=series(g,x=0,80): seq(coeff(gser,x^n),n=6..77); # _Emeric Deutsch_, May 31 2005 %t A101271 Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&GCD@@#==1&]],{n,6,50}] (* _Gus Wiseman_, Oct 13 2020 *) %Y A101271 Cf. A023024-A023030, A000742-A000743, A023031-A023035. %Y A101271 A000741 is the ordered non-strict version. %Y A101271 A001399(n-6) does not require relative primality. %Y A101271 A023022 counts pairs instead of triples. %Y A101271 A023023 is the not necessarily strict version. %Y A101271 A078374 counts these partitions of any length, with Heinz numbers A302796. %Y A101271 A101271*6 is the ordered version. %Y A101271 A220377 is the pairwise coprime instead of relatively prime version. %Y A101271 A284825 counts the case that is pairwise non-coprime also. %Y A101271 A337605 is the pairwise non-coprime instead of relatively prime version. %Y A101271 A008289 counts strict partitions by sum and length. %Y A101271 A007304 gives the Heinz numbers of 3-part strict partitions. %Y A101271 A307719 counts 3-part pairwise coprime partitions. %Y A101271 A337601 counts 3-part partitions whose distinct parts are pairwise coprime. %Y A101271 Cf. A000010, A000217, A000837, A007360, A014612, A055684, A289509, A332004, A337452, A337563. %K A101271 easy,nonn %O A101271 6,3 %A A101271 _Vladeta Jovovic_, Dec 19 2004 %E A101271 More terms from _Emeric Deutsch_, May 31 2005