cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101277 Number of partitions of 2n in which all odd parts occur with multiplicity 2. There is no restriction on the even parts.

This page as a plain text file.
%I A101277 #46 Feb 16 2025 08:32:55
%S A101277 1,2,3,6,10,16,25,38,57,84,121,172,243,338,465,636,862,1158,1546,2050,
%T A101277 2702,3542,4616,5986,7729,9932,12707,16196,20563,26010,32788,41194,
%U A101277 51591,64418,80195,99558,123269,152226,187514,230434,282519,345596,421844,513834
%N A101277 Number of partitions of 2n in which all odd parts occur with multiplicity 2. There is no restriction on the even parts.
%C A101277 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C A101277 This is also A080054 times 1/Product_{k>=1} (1 - x^(2k)).
%C A101277 There are no partitions of 2n+1 in which all odd parts occur with multiplicity 2. - _Michael Somos_, Oct 27 2008
%H A101277 G. C. Greubel, <a href="/A101277/b101277.txt">Table of n, a(n) for n = 0..1000</a>
%H A101277 Cristina Ballantine, Mircea Merca, <a href="https://doi.org/10.1007/s00009-019-1301-6">Jacobi's Four and Eight Squares Theorems and Partitions into Distinct Parts</a>, Mediterranean Journal of Mathematics (2019) Vol. 16, No. 2, 26.
%H A101277 Noureddine Chair, <a href="http://arxiv.org/abs/hep-th/0409011">Partition Identities From Partial Supersymmetry</a>, arXiv:hep-th/0409011v1, 2004.
%H A101277 Brian Drake, <a href="http://dx.doi.org/10.1016/j.disc.2008.11.020">Limits of areas under lattice paths</a>, Discrete Math. 309 (2009), no. 12, 3936-3953.
%H A101277 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A101277 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A101277 Euler transform of period 4 sequence [2, 0, 2, 1, ...]. - _Michael Somos_, Feb 10 2005
%F A101277 G.f.: (1/theta_4(0, x))*Product_{k>0}(1+x^(2k)) = theta_4(0, x^2)/theta_4(0, x)*Product_{k>0}(1-x^(2k)) = 1/Product_{k>0} ((1-x^(2k-1))^2 * (1-x^(4k))).
%F A101277 Expansion of 1 / (psi(-x) * chi(-x)) in powers of x where psi(), chi() are Ramanujan theta functions. - _Michael Somos_, Oct 27 2008
%F A101277 Expansion of q^(1/12) * eta(q^2)^2 / (eta(q)^2 * eta(q^4)) in powers of q. - _Michael Somos_, Oct 27 2008
%F A101277 a(n) ~ sqrt(5) * exp(Pi*sqrt(5*n/6)) / (8*sqrt(3)*n). - _Vaclav Kotesovec_, Aug 30 2015
%F A101277 G.f.: 2/((x; x)_inf * (-1; -x)_inf), where (a; q)_inf is the q-Pochhammer symbol. - _Vladimir Reshetnikov_, Nov 22 2016
%F A101277 Expansion of phi(-x^2) / f(-x)^2 = chi(x) / f(-x) = 1 / (chi(-x)^2 * f(-x^4)) = f(-x^4) / psi(-x)^2 = psi(-x) / chi(-x) = chi(x)^2 / psi(-x^2) in powers of x. - _Michael Somos_, Nov 22 2016
%e A101277 G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 25*x^6 + 38*x^7 + 57*x^8 + ...
%e A101277 G.f. = 1/q + 2*q^11 + 3*q^23 + 6*q^35 + 10*q^47 + 16*q^59 + 25*q^71 + ...
%e A101277 E.g. 12 = 10 + 2 = 10 + 1 + 1 = 8 + 4 = 8 + 2 + 2 = 8 + 2 + 1 + 1 = 6 + 6 = 6 + 4 + 2 = 6 + 4 + 1 + 1 = 6 + 3 + 3 = 6 + 2 + 2 + 2 = 6 + 2 + 2 + 1 + 1 = 5 + 5 + 2 = 5 + 5 + 1 + 1 = 4 + 4 + 4 = 4 + 4 + 2 + 2 = 4 + 4 + 2 + 1 + 1 = 4 + 3 + 3 + 2 = 4 + 3 + 3 + 1 + 1 = 4 + 2 + 2 + 2 + 2 = 4 + 2 + 2 + 2 + 1 + 1 = 3 + 3 + 2 + 2 + 2 = 3 + 3 + 2 + 2 + 1 + 1 = 2 + 2 + 2 + 2 + 2 + 2 = 2 + 2 + 2 + 2 + 2 + 1 + 1.
%p A101277 series(product(1/((1-x^(2*k-1))^2*(1-x^(4*k))),k=1..100),x=0,100);
%t A101277 nmax=50; CoefficientList[Series[Product[1/((1-x^(2*k-1))^2 * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 30 2015 *)
%t A101277 (2/(QPochhammer[x] QPochhammer[-1, -x]) + O[x]^45)[[3]] (* _Vladimir Reshetnikov_, Nov 22 2016 *)
%t A101277 a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2] / QPochhammer[ x]^2, {x, 0, n}]; (* _Michael Somos_, Nov 22 2016 *)
%t A101277 a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / QPochhammer[ x], {x, 0, n}]; (* _Michael Somos_, Nov 22 2016 *)
%t A101277 a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, -x] QPochhammer[ x]), {x, 0, n}]; (* _Michael Somos_, Nov 22 2016 *)
%o A101277 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* _Michael Somos_, Feb 10 2005 */
%Y A101277 Cf. A015128, A098151, A080054.
%K A101277 nonn
%O A101277 0,2
%A A101277 _Noureddine Chair_, Dec 20 2004; revised Jan 05 2005