A101281 Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n and having k low humps.
1, 1, 1, 2, 3, 1, 8, 8, 5, 1, 36, 28, 18, 7, 1, 164, 120, 68, 32, 9, 1, 764, 552, 292, 136, 50, 11, 1, 3652, 2616, 1356, 608, 240, 72, 13, 1, 17852, 12680, 6532, 2880, 1140, 388, 98, 15, 1, 88868, 62664, 32156, 14128, 5572, 1976, 588, 128, 17, 1, 449004, 314744
Offset: 0
Examples
T(3,2) = 5 because we have (UD)(UHD), (UHD)(UD), H(UD)(UD), (UD)H(UD) and (UD)(UD)H, the low humps being shown between parentheses. Triangle begins: 1; 1,1; 2,3,1; 8,8,5,1; 36,28,18,7,1;
Programs
-
Maple
G:=(-1+z)*(-1+z+sqrt(1-6*z+z^2))/z/(3-3*z-sqrt(1-6*z+z^2) -t+t*z +t*sqrt(1-6*z+z^2)): Gser:=simplify(series(G,z=0,12)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: seq(seq(coeff(t*P[n],t^k), k=1..n+1), n=0..10);
Formula
G.f.: G(t, z)=(1-z)R/[1-z+(1-t)zR], where R=[1-z-sqrt(1-6z+z^2)]/(2z) is the g.f. of the large Schroeder numbers (A006318).
Comments