This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A101350 #10 Nov 11 2017 19:59:59 %S A101350 1,1,1,1,1,3,1,5,2,1,7,7,1,9,16,3,1,11,29,15,1,13,46,43,5,1,15,67,95, %T A101350 30,1,17,92,179,104,8,1,19,121,303,271,58,1,21,154,475,591,235,13,1, %U A101350 23,191,703,1140,705,109,1,25,232,995,2010,1746,506,21,1,27,277,1359,3309,3780 %N A101350 Triangle read by rows: T(n,k) = number of k-matchings in the graph obtained by a zig-zag triangulation of a convex n-gon, T(0,0)=T(1,0)=T(2,0)=T(2,1)=1 (n > 2, 0 <= k <= floor(n/2)). %H A101350 Andrew Howroyd, <a href="/A101350/b101350.txt">Table of n, a(n) for n = 0..649</a> %F A101350 G.f.: 1/(1 - z - tz^2 - tz^3 - t^2z^4). %e A101350 T(5,2)=7 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have seven 2-matchings: {AB,CD},{AB,DE},{BC,AD},{BC,DE},{BC,EA},{CD,EA} and {DE,AC}. %e A101350 Triangle begins: %e A101350 1; %e A101350 1; %e A101350 1, 1; %e A101350 1, 3; %e A101350 1, 5, 2; %e A101350 1, 7, 7; %e A101350 1, 9, 16, 3; %e A101350 1, 11, 29, 15; %e A101350 1, 13, 46, 43, 5; %e A101350 ... %p A101350 G:=1/(1-z-t*z^2-t*z^3-t^2*z^4):Gserz:=simplify(series(G,z=0,18)):P[0]:=1: for n from 1 to 16 do P[n]:=sort(coeff(Gserz,z^n)) od:for n from 0 to 16 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od;# yields the sequence in triangular form %o A101350 (PARI) %o A101350 s(n) = 1/(1-x-y*x^2-y*x^3-y^2*x^4) + O(x^n); %o A101350 my(gf=Pol(s(20))); for(n=0, poldegree(gf), my(p=polcoeff(gf,n)); for(k=0, poldegree(p), print1(polcoeff(p,k), ", ")); print) \\ _Andrew Howroyd_, Nov 04 2017 %Y A101350 Row sums yield A000078 (the tetranacci numbers). T(2n+1, n) = A023610(n) (n > 0). T(2n, n) = A000045(n+1) (the Fibonacci numbers). %Y A101350 Cf. A000078, A023610, A000045. %K A101350 nonn,tabf %O A101350 0,6 %A A101350 _Emeric Deutsch_, Dec 25 2004